We explore a class of splitting schemes employing implicit-explicit (IMEX) time-stepping to achieve accurate and energy-stable solutions for thin-film equations and Cahn-Hilliard models with variable mobility. This splitting method incorporates a linear, constant coefficient implicit step, facilitating efficient computational implementation. We investigate the influence of stabi- lizing splitting parameters on the numerical solution computationally, considering various initial conditions. Furthermore, we generate energy-stability plots for the proposed methods, examin- ing different choices of splitting parameter values and timestep sizes. These methods enhance the accuracy of the original bi-harmonic-modified (BHM) approach, while preserving its energy- decreasing property and achieving second-order accuracy. We present numerical experiments to illustrate the performance of the proposed methods.
more »
« less
Second-Order Modified Nonstandard Explicit Euler and Explicit Runge–Kutta Methods for n-Dimensional Autonomous Differential Equations
Nonstandard finite-difference (NSFD) methods, pioneered by R. E. Mickens, offer accurate and efficient solutions to various differential equation models in science and engineering. NSFD methods avoid numerical instabilities for large time steps, while numerically preserving important properties of exact solutions. However, most NSFD methods are only first-order accurate. This paper introduces two new classes of explicit second-order modified NSFD methods for solving n-dimensional autonomous dynamical systems. These explicit methods extend previous work by incorporating novel denominator functions to ensure both elementary stability and second-order accuracy. This paper also provides a detailed mathematical analysis and validates the methods through numerical simulations on various biological systems.
more »
« less
- PAR ID:
- 10541396
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Computation
- Volume:
- 12
- Issue:
- 9
- ISSN:
- 2079-3197
- Page Range / eLocation ID:
- 183
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this article we study the stability of explicit finite difference discretization of advection–diffusion equations (ADE) with arbitrary order of accuracy in the context of method of lines. The analysis first focuses on the stability of the system of ordinary differential equations that is obtained by discretizing the ADE in space and then extends to fully discretized methods in combination with explicit Runge–Kutta methods. In particular, we prove that all stable semi‐discretization of the ADE leads to a conditionally stable fully discretized method as long as the time‐integrator is at least first‐order accurate, whereas high‐order spatial discretization of the advection equation cannot yield a stable method if the temporal order is too low. In the second half of the article, the analysis and the stability results are extended to a partially dissipative wave system, which serves as a model for common practice in many fluid mechanics applications that incorporate a viscous stress in the momentum equation but no heat dissipation in the energy equation. Finally, the major theoretical predictions are verified by numerical examples.more » « less
-
New implicit and implicit-explicit time-stepping methods for the wave equation in second-order form are described with application to two and three-dimensional problems discretized on overset grids. The implicit schemes are single step, three levels in time, and based on the modified equation approach. Second and fourth-order accurate schemes are developed and they incorporate upwind dissipation for stability on overset grids. The fully implicit schemes are useful for certain applications such as the WaveHoltz algorithm for solving Helmholtz problems where very large time-steps are desired. Some wave propagation problems are geometrically stiff due to localized regions of small grid cells, such as grids needed to resolve fine geometric features, and for these situations the implicit time-stepping scheme is combined with an explicit scheme: the implicit scheme is used for component grids containing small cells while the explicit scheme is used on the other grids such as background Cartesian grids. The resulting partitioned implicit-explicit scheme can be many times faster than using an explicit scheme everywhere. The accuracy and stability of the schemes are studied through analysis and numerical computations.more » « less
-
Explicit Runge--Kutta (RK) methods are susceptible to a reduction in the observed order of convergence when applied to an initial boundary value problem with time-dependent boundary conditions. We study conditions on explicit RK methods that guarantee high order convergence for linear problems; we refer to these conditions as weak stage order conditions. We prove a general relationship between the method's order, weak stage order, and number of stages. We derive explicit RK methods with high weak stage order and demonstrate, through numerical tests, that they avoid the order reduction phenomenon up to any order for linear problems and up to order three for nonlinear problems.more » « less
-
Abstract An explicit spectrally accurate order-adaptive Hermite-Taylor method for the Schrödinger equation is developed. Numerical experiments illustrating the properties of the method are presented. The method, which is able to use very coarse grids while still retaining high accuracy, compares favorably to an existing exponential integrator – high order summation-by-parts finite difference method.more » « less
An official website of the United States government

