- Award ID(s):
- 2015317
- PAR ID:
- 10423851
- Date Published:
- Journal Name:
- Biomimetics
- Volume:
- 7
- Issue:
- 4
- ISSN:
- 2313-7673
- Page Range / eLocation ID:
- 226
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Mammalian locomotion is generated by central pattern generators (CPGs) in the spinal cord, which produce alternating flexor and extensor activities controlling the locomotor movements of each limb. Afferent feedback signals from the limbs are integrated by the CPGs to provide adaptive control of locomotion. Responses of CPG-generated neural activity to afferent feedback stimulation have been previously studied during fictive locomotion in immobilized cats. Yet, locomotion in awake, behaving animals involves dynamic interactions between central neuronal circuits, afferent feedback, musculoskeletal system, and environment. To study these complex interactions, we developed a model simulating interactions between a half-center CPG and the musculoskeletal system of a cat hindlimb. Then, we analyzed the role of afferent feedback in the locomotor adaptation from a dynamic viewpoint using the methods of dynamical systems theory and nullcline analysis. Our model reproduced limb movements during regular cat walking as well as adaptive changes of these movements when the foot steps into a hole. The model generates important insights into the mechanism for adaptive locomotion resulting from dynamic interactions between the CPG-based neural circuits, the musculoskeletal system, and the environment.more » « less
-
Synopsis The central pattern generator (CPG) in anguilliform swimming has served as a model for examining the neural basis of locomotion. This system has been particularly valuable for the development of mathematical models. As our biological understanding of the neural basis of locomotion has expanded, so too have these models. Recently, there have been significant advancements in our understanding of the critical role that mechanosensory feedback plays in robust locomotion. This work has led to a push in the field of mathematical modeling to incorporate mechanosensory feedback into CPG models. In this perspective piece, we review advances in the development of these models and discuss how newer complex models can support biological investigation. We highlight lamprey spinal cord regeneration as an area that can both inform these models and benefit from them.
-
ABSTRACT Balitorid loaches are a family of fishes that exhibit morphological adaptations to living in fast flowing water, including an enlarged sacral rib that creates a ‘hip’-like skeletal connection between the pelvis and the axial skeleton. The presence of this sacral rib, the robustness of which varies across the family, is hypothesized to facilitate terrestrial locomotion seen in the family. Terrestrial locomotion in balitorids is unlike that of any known fish: the locomotion resembles that of terrestrial tetrapods. Emergence and convergence of terrestrial locomotion from water to land has been studied in fossils; however, studying balitorid walking provides a present-day natural laboratory to examine the convergent evolution of walking movements. We tested the hypothesis that balitorid species with more robust connections between the pelvic and axial skeleton (M3 morphotype) are more effective at walking than species with reduced connectivity (M1 morphotype). We predicted that robust connections would facilitate travel per step and increase mass support during movement. We collected high-speed video of walking in seven balitorid species to analyze kinematic variables. The connection between internal anatomy and locomotion on land are revealed herein with digitized video analysis, μCT scans, and in the context of the phylogenetic history of this family of fishes. Our species sampling covered the extremes of previously identified sacral rib morphotypes, M1 and M3. Although we hypothesized the robustness of the sacral rib to have a strong influence on walking performance, there was not a large reduction in walking ability in the species with the least modified rib (M1). Instead, walking kinematics varied between the two balitorid subfamilies with a generally more ‘walk-like’ behavior in the Balitorinae and more ‘swim-like’ behavior in the Homalopteroidinae. The type of terrestrial locomotion displayed in balitorids is unique among living fishes and aids in our understanding of the extent to which a sacral connection facilitates terrestrial walking.more » « less
-
We present a novel set of quantitative measures for “likeness” (error function) designed to alleviate the time-consuming and subjective nature of manually comparing biological recordings from electrophysiological experiments with the outcomes of their mathematical models. Our innovative “blended” system approach offers an objective, high-throughput, and computationally efficient method for comparing biological and mathematical models. This approach involves using voltage recordings of biological neurons to drive and train mathematical models, facilitating the derivation of the error function for further parameter optimization. Our calibration process incorporates measurements such as action potential (AP) frequency, voltage moving average, voltage envelopes, and the probability of post-synaptic channels. To assess the effectiveness of our method, we utilized the sea slug Melibe leonina swim central pattern generator (CPG) as our model circuit and conducted electrophysiological experiments with TTX to isolate CPG interneurons. During the comparison of biological recordings and mathematically simulated neurons, we performed a grid search of inhibitory and excitatory synapse conductance. Our findings indicate that a weighted sum of simple functions is essential for comprehensively capturing a neuron’s rhythmic activity. Overall, our study suggests that our blended system approach holds promise for enabling objective and high-throughput comparisons between biological and mathematical models, offering significant potential for advancing research in neural circuitry and related fields.
-
Sun, Weichao ; Yao, Bin (Ed.)This paper introduces an analytically tractable and computationally efficient model for legged robot dynamics during locomotion on a dynamic rigid surface (DRS), along with an approximate analytical solution and a real-time walking pattern generator synthesized based on the model and solution. By relaxing the static-surface assumption, we extend the classical, time-invariant linear inverted pendulum (LIP) model for legged locomotion on a static surface to dynamic-surface locomotion, resulting in a time-varying LIP model termed as “DRS-LIP”. Sufficient and necessary stability conditions of the time-varying DRS-LIP model are obtained based on the Floquet theory. This model is also transformed into Mathieu’s equation to derive an approximate analytical solution that provides reasonable accuracy with a relatively low computational cost. Using the extended model and its solution, a walking pattern generator is developed to efficiently plan physically feasible trajectories for quadrupedal walking on a vertically oscillating surface. Finally, simulations and hardware experiments from a Laikago quadrupedal robot walking on a pitching treadmill (with a maximum vertical acceleration of 1 m/s ) confirm the accuracy and efficiency of the proposed analytical solution, as well as the efficiency, feasibility, and robustness of the pattern generator, under various surface motions and gait parameters.more » « less