skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Volumetric Rates of Luminous Red Novae and Intermediate-luminosity Red Transients with the Zwicky Transient Facility
Abstract Luminous red novae (LRNe) are transients characterized by low luminosities and expansion velocities, and they are associated with mergers or common-envelope ejections in stellar binaries. Intermediate-luminosity red transients (ILRTs) are an observationally similar class with unknown origins, but they are generally believed to be either electron-capture supernovae in super-asymptotic giant branch stars or outbursts in dusty luminous blue variables (LBVs). In this paper, we present a systematic sample of eight LRNe and eight ILRTs detected as part of the Census of the Local Universe (CLU) experiment on the Zwicky Transient Facility (ZTF). The CLU experiment spectroscopically classifies ZTF transients associated with nearby (<150 Mpc) galaxies, achieving 80% completeness for m r < 20 mag. Using the ZTF-CLU sample, we derive the first systematic LRNe volumetric rate of 7.8 − 3.7 + 6.5 × 10 − 5 Mpc −3 yr −1 in the luminosity range −16 ≤ M r ≤ −11 mag. We find that, in this luminosity range, the LRN rate scales as dN / dL ∝ L − 2.5 ± 0.3 —significantly steeper than the previously derived scaling of L −1.4±0.3 for lower-luminosity LRNe ( M V ≥ −10 mag). The steeper power law for LRNe at high luminosities is consistent with the massive merger rates predicted by binary population synthesis models. We find that the rates of the brightest LRNe ( M r ≤ −13 mag) are consistent with a significant fraction of them being progenitors of double compact objects that merge within a Hubble time. For ILRTs, we derive a volumetric rate of 2.6 − 1.4 + 1.8 × 10 − 6 Mpc −3 yr −1 for M r ≤ −13.5 mag, which scales as dN / dL ∝ L − 2.5 ± 0.5 . This rate is ∼1%–5% of the local core-collapse supernova rate and is consistent with theoretical ECSN rate estimates.  more » « less
Award ID(s):
2034437
PAR ID:
10424029
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Tidal disruption events (TDEs), in which a star is destroyed by the gravitational field of a supermassive black hole (SMBH), are being observed at a high rate owing to the advanced state of survey science. One of the properties of TDEs that is measured with increasing statistical reliability is the TDE luminosity function, d N ̇ TDE / dL , which is the TDE rate per luminosity (i.e., how many TDEs are within a given luminosity range). Here we show that if the luminous emission from a TDE is directly coupled to the rate of return of tidally destroyed debris to the SMBH, then the TDE luminosity function is in good agreement with observations and scales as ∝ L −2.5 for high luminosities, provided that the SMBH mass function dN • / dM • —the number of SMBHs ( N • ) per SMBH mass ( M • )—is approximately flat in the mass range over which we observe TDEs. We also show that there is a cutoff in the luminosity function at low luminosities that is a result of direct captures, and this cutoff has been tentatively observed. If dN • / dM • is flat, which is in agreement with some observational campaigns, these results suggest that the fallback rate feeds the accretion rate in TDEs. Contrarily, if dN • / d log M • is flat, which has been found theoretically and is suggested by other observational investigations, then the emission from TDEs is likely powered by another mechanism. Future observations and more TDE statistics, provided by the Rubin Observatory/LSST, will provide additional evidence as to the reality of this tension. 
    more » « less
  2. We present photometric and spectroscopic data on three extragalactic luminous red novae (LRNe): AT 2018bwo , AT 2021afy , and AT 2021blu . AT 2018bwo was discovered in NGC 45 (at about 6.8 Mpc) a few weeks after the outburst onset. During the monitoring period, the transient reached a peak luminosity of 10 40 erg s −1 . AT 2021afy , hosted by UGC 10043 (∼49.2 Mpc), showed a double-peaked light curve, with the two peaks reaching a similar luminosity of 2.1(±0.6)×10 41 erg s −1 . Finally, for AT 2021blu in UGC 5829 (∼8.6 Mpc), the pre-outburst phase was well-monitored by several photometric surveys, and the object showed a slow luminosity rise before the outburst. The light curve of AT 2021blu was sampled with an unprecedented cadence until the object disappeared behind the Sun, and it was then recovered at late phases. The light curve of LRN AT 2021blu shows a double peak, with a prominent early maximum reaching a luminosity of 6.5 × 10 40 erg s −1 , which is half of that of AT 2021afy . The spectra of AT 2021afy and AT 2021blu display the expected evolution for LRNe: a blue continuum dominated by prominent Balmer lines in emission during the first peak, and a redder continuum consistent with that of a K-type star with narrow absorption metal lines during the second, broad maximum. The spectra of AT 2018bwo are markedly different, with a very red continuum dominated by broad molecular features in absorption. As these spectra closely resemble those of LRNe after the second peak, AT 2018bwo was probably discovered at the very late evolutionary stages. This would explain its fast evolution and the spectral properties compatible with that of an M-type star. From the analysis of deep frames of the LRN sites years before the outburst, and considerations of the light curves, the quiescent progenitor systems of the three LRNe were likely massive, with primaries ranging from about 13 M ⊙ for AT 2018bwo , to 14 −1 +4 M ⊙ for AT 2021blu , and over 40 M ⊙ for AT 2021afy . 
    more » « less
  3. ABSTRACT We present a search for luminous long-duration ambiguous nuclear transients (ANTs) similar to the unprecedented discovery of the extreme ambiguous event AT2021lwx with a $$\gt 150$$ d rise time and luminosity $$10^{45.7}$$ erg s$$^{-1}$$. We use the Lasair transient broker to search Zwicky Transient Facility (ZTF) data for transients lasting more than one year and exhibiting smooth declines. Our search returns 59 events, 7 of which we classify as ANTs assumed to be driven by accretion onto supermassive black holes. We propose the remaining 52 are stochastic variability from regular supermassive black hole accretion rather than distinct transients. We supplement the seven ANTs with three nuclear transients in ZTF that fail the light curve selection but have clear single flares and spectra that do not resemble typical active galactic nucleus. All of these 11 ANTs have a mid-infrared flare from an assumed dust echo, implying the ubiquity of dust around the black holes giving rise to ANTs. No events are more luminous than AT2021lwx, but one (ZTF19aamrjar) has twice the duration and a higher integrated energy release. On the other extreme, ZTF20abodaps reaches a luminosity close to AT2021lwx with a rise time $$\lt 20$$ d and that fades smoothly in $$\gt 600$$ d. We define a portion of rise-time versus flare amplitude space that selects ANTs with $$\sim 50$$ per cent purity against variable AGNs. We calculate a volumetric rate of $$\gtrsim 3\times 10^{-11}$$ Mpc$$^{-1}$$ yr$$^{-1}$$, consistent with the events being caused by tidal disruptions of intermediate and high-mass stars. 
    more » « less
  4. Abstract We analyze pre-explosion near- and mid-infrared (IR) imaging of the site of SN 2023ixf in the nearby spiral galaxy M101 and characterize the candidate progenitor star. The star displays compelling evidence of variability with a possible period of ≈1000 days and an amplitude of Δ m ≈ 0.6 mag in extensive monitoring with the Spitzer Space Telescope since 2004, likely indicative of radial pulsations. Variability consistent with this period is also seen in the near-IR J and K s bands between 2010 and 2023, up to just 10 days before the explosion. Beyond the periodic variability, we do not find evidence for any IR-bright pre-supernova outbursts in this time period. The IR brightness ( M K s = − 10.7 mag) and color ( J − K s = 1.6 mag) of the star suggest a luminous and dusty red supergiant. Modeling of the phase-averaged spectral energy distribution (SED) yields constraints on the stellar temperature ( T eff = 3500 − 1400 + 800 K) and luminosity ( log L / L ⊙ = 5.1 ± 0.2 ). This places the candidate among the most luminous Type II supernova progenitors with direct imaging constraints, with the caveat that many of these rely only on optical measurements. Comparison with stellar evolution models gives an initial mass of M init = 17 ± 4 M ⊙ . We estimate the pre-supernova mass-loss rate of the star between 3 and 19 yr before explosion from the SED modeling at M ̇ ≈ 3 × 10 − 5 to 3 × 10 −4 M ⊙ yr −1 for an assumed wind velocity of v w = 10 km s −1 , perhaps pointing to enhanced mass loss in a pulsation-driven wind. 
    more » « less
  5. We present the spectroscopic and photometric study of five intermediate-luminosity red transients (ILRTs), namely AT 2010dn, AT 2012jc, AT 2013la, AT 2013lb, and AT 2018aes. They share common observational properties and belong to a family of objects similar to the prototypical ILRT SN 2008S. These events have a rise time that is less than 15 days and absolute peak magnitudes of between −11.5 and −14.5 mag. Their pseudo-bolometric light curves peak in the range 0.5–9.0 × 10 40  erg s −1 and their total radiated energies are on the order of (0.3–3) × 10 47 erg. After maximum brightness, the light curves show a monotonic decline or a plateau, resembling those of faint supernovae IIL or IIP, respectively. At late phases, the light curves flatten, roughly following the slope of the 56 Co decay. If the late-time power source is indeed radioactive decay, these transients produce 56 Ni masses on the order of 10 −4 to 10 −3   M ⊙ . The spectral energy distribution of our ILRT sample, extending from the optical to the mid-infrared (MIR) domain, reveals a clear IR excess soon after explosion and non-negligible MIR emission at very late phases. The spectra show prominent H lines in emission with a typical velocity of a few hundred km s −1 , along with Ca II features. In particular, the [Ca  II ] λ 7291,7324 doublet is visible at all times, which is a characteristic feature for this family of transients. The identified progenitor of SN 2008S, which is luminous in archival Spitzer MIR images, suggests an intermediate-mass precursor star embedded in a dusty cocoon. We propose the explosion of a super-asymptotic giant branch star forming an electron-capture supernova as a plausible explanation for these events. 
    more » « less