skip to main content


Title: Lignin phenol quantification from machine learning‐assisted decomposition of liquid chromatography‐absorbance spectroscopy data
Abstract

Analysis of lignin in seawater is essential to understanding the fate of terrestrial dissolved organic matter (DOM) in the ocean and its role in the carbon cycle. Lignin is typically quantified by gas or liquid chromatography, coupled with mass spectrometry (GC‐MS or LC‐MS). MS instrumentation can be relatively expensive to purchase and maintain. Here we present an improved approach for quantification of lignin phenols using LC and absorbance detection. The approach applies a modified version of parallel factor analysis (PARAFAC2) to 2ndderivative absorbance chromatograms. It is capable of isolating individual elution profiles of analytes despite co‐elution and overall improves sensitivity and specificity, compared to manual integration methods. For most lignin phenols, detection limits below 5 nmol L−1were achieved, which is comparable to MS detection. The reproducibility across all laboratory stages for our reference material showed a relative standard deviation between 1.47% and 16.84% for all 11 lignin phenols. Changing the amount of DOM in the reaction vessel for the oxidation (dissolved organic carbon between 22 and 367 mmol L−1), did not significantly affect the final lignin phenol composition. The new method was applied to seawater samples from the Kattegat and Davis Strait. The total concentration of dissolved lignin phenols measured in the two areas was between 4.3–10.1 and 2.1–3.2 nmol L−1, respectively, which is within the range found by other studies. Comparison with a different oxidation approach and detection method (GC‐MS) gave similar results and underline the potential of LC and absorbance detection for analysis of dissolved lignin with our proposed method.

 
more » « less
Award ID(s):
2025954 1832229
NSF-PAR ID:
10424047
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Limnology and Oceanography: Methods
Volume:
21
Issue:
8
ISSN:
1541-5856
Page Range / eLocation ID:
p. 508-528
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Several areas around the world rely on seawater desalination to meet drinking water needs, but a detailed analysis of dissolved organic matter (DOM) changes and disinfection by-product (DBP) formation due to chlorination during the desalination processes has yet to be evaluated. To that end, DOM composition was analyzed in samples collected from a desalination plant using bulk measurements ( e.g. dissolved organic carbon, total dissolved nitrogen, total organic bromine), absorbance and fluorescence spectroscopy, and ultrahigh resolution mass spectrometry (HRMS). Water samples collected after chlorination ( e.g. post pretreatment (PT), reverse osmosis (RO) reject (brine wastewater) (BW), RO permeate (ROP), and drinking water (DW)), revealed that chlorination resulted in decreases in absorbance and increases in fluorescence apparent quantum yield spectra. All parameters measured were low or below detection in ROP and in DW. However, total solid phase extractable (Bond Elut Priority PolLutant (PPL) cartridges) organic bromine concentrations increased significantly in PT and BW samples and HRMS analysis revealed 392 molecular ions containing carbon, hydrogen, oxygen, bromine (CHOBr) and 107 molecular ions containing CHOBr + sulfur (CHOSBr) in BW PPL extracts. A network analysis between supposed DBP precursors suggested that the formation of CHOBr formulas could be explained largely by electrophilic substitution reactions, but also HOBr addition reactions. The reactions of sulfur containing compounds are more complex, and CHOSBr could possibly be due to the bromination of surfactant degradation products like sulfophenyl carboxylic acids (SPC) or even hydroxylated SPCs. Despite the identification of hundreds of DBPs, BW did not show any acute or chronic toxicity to mysid shrimp. High resolution MS/MS analysis was used to propose structures for highly abundant bromine-containing molecular formulas but given the complexity of DOM and DBPs found in this study, future work analyzing desalination samples during different times of year ( e.g. during algal blooms) and during different treatments is warranted. 
    more » « less
  2. After attending this presentation, attendees will gain knowledge in the strategy to achieve high-throughput and simultaneous analysis of cannabinoids and appreciate a validated LC-UV method for analysis of twelve cannabinoids in hemp oil. This presentation will first impact the forensic science community by introducing three fast LC separations of twelve cannabinoids that can be used with either UV or mass spectrometric (MS) detection. It will further impact the forensic science community by introducing a validated LC-UV method for high-throughput and simultaneous analysis of twelve cannabinoids in hemp oil, which can be routinely used by cannabis testing labs. In recent years, the use of products of Cannabis sativa L. for medicinal purposes has been in a rapid growth, although their preparation procedure has not been clearly standardized and their quality has not been well regulated. To analyze the therapeutic components, i.e. cannabinoids, in products of Cannabis sativa L., LC-UV has been frequently used, because LC-UV is commonly available and usually appropriate for routine analysis by the cannabis growers and commercial suppliers. In the literature, a few validated LC-UV methods have been described. However, so far, all validated LC-UV methods only focused in the quantification of eleven or less cannabinoids. Therefore, a method able to simultaneously analyze more cannabinoids in a shorter run time is still in high demand, because more and more cannabinoids have been isolated and many of them have shown medicinal properties. In this study, the LC separation of twelve cannabinoids, including cannabichromene (CBC), cannabidiolic acid (CBDA), cannabidiol (CBD), cannabidivarinic acid (CBDVA), cannabidivarin (CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabinol (CBN), delta-8 tetrahydrocannabinol (Δ8-THC), delta-9 tetrahydrocannabinolic acid A (Δ9-THCA A), delta-9 tetrahydrocannabinol (Δ9-THC), and tetrahydrocannabivarin (THCV), has been systematically optimized using a Phenomenex Luna Omega 3 µm Polar C18 150 mm × 4.6 mm column with regard to the effects of the type of organic solvent, i.e. methanol and acetonitrile, the content of the organic solvent, and the pH of the mobile phase. The optimization has resulted in three LC conditions at 1.0 mL/minute able to separate the twelve cannabinoids: 1) a mobile phase consisting of water and methanol, both containing 0.1% formic acid (pH 2.69), with a gradient elution at 75% methanol for the first 3 minutes and then linearly increase to 100% methanol at 12.5 minutes; 2) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.1% formic acid and 20 mM ammonium formate (pH 3.69), with an isocratic elution at 75% acetonitrile for 14 minutes; and 3) a mobile phase consisting of water and 90% (v/v) acetonitrile in water, both containing 0.03% formic acid and 20 mM ammonium formate (pH 4.20), with an isocratic elution at 75% acetonitrile for 14 minutes. In order to demonstrate the effectiveness of the achieved LC separations, a LC-UV method is further validated for the high-throughput and simultaneous analysis of twelve cannabinoids. The method used the mobile phase at pH 3.69, which resulted in significant improvement in throughput compared to other validated LC-UV methods published so far. The method used flurbiprofen as the internal standard. The linear calibration range of all the cannabinoids were between 0.1 to 25 ppm with R2≥0.9993. The LOQ (S/N=10) of the cannabinoids was between 17.8 and 74.2 ppb. The validation used a hemp oil containing 3.2 wt% CBD and no other cannabinoids, which was reported by the vendor with a certificate of analysis, as the matrix to prepare control samples: the hemp oil was first extracted using liquid-liquid extraction (LLE) with methanol; cannabinoids were then spiked into the extract at both 0.5 ppm and 5 ppm level. Afterwards, the recovery, precision (%RSD) and accuracy (%Error) of the control samples were assessed and the results met the requirements by the ISO/IEC 17025 and ASTM E2549-14 guidelines. 
    more » « less
  3. Abstract. The western tropical South Pacific (WTSP) Ocean has been recognized as a global hot spot of dinitrogen (N2) fixation. Here, as in other marine environments across the oceans, N2 fixation studies have focused on the sunlit layer. However, studies have confirmed the importance of aphotic N2 fixation activity, although until now only one had been performed in the WTSP. In order to increase our knowledge of aphotic N2 fixation in the WTSP, we measured N2 fixation rates and identified diazotrophic phylotypes in the mesopelagic layer along a transect spanning from New Caledonia to French Polynesia. Because non-cyanobacterial diazotrophs presumably need external dissolved organic matter (DOM) sources for their nutrition, we also identified DOM compounds using Fourier transform ion cyclotron resonance mass spectrometry (FTICRMS) with the aim of searching for relationships between the composition of DOM and non-cyanobacterial N2 fixation in the aphotic ocean. N2 fixation rates were low (average 0.63±0.07nmolNL−1d−1) but consistently detected across all depths and stations, representing ∼ 6–88% of photic N2 fixation. N2 fixation rates were not significantly correlated with DOM compounds. The analysis of nifH gene amplicons revealed a wide diversity of non-cyanobacterial diazotrophs, mostly matching clusters 1 and 3. Interestingly, a distinct phylotype from the major nifH subcluster 1G dominated at 650dbar, coinciding with the oxygenated Subantarctic Mode Water (SAMW). This consistent pattern suggests that the distribution of aphotic diazotroph communities is to some extent controlled by water mass structure. While the data available are still too scarce to elucidate the distribution and controls of mesopelagic non-cyanobacterial diazotrophs in the WTSP, their prevalence in the mesopelagic layer and the consistent detection of active N2 fixation activity at all depths sampled during our study suggest that aphotic N2 fixation may contribute significantly to fixed nitrogen inputs in this area and/or areas downstream of water mass circulation.

     
    more » « less
  4. Introduction

    Dissolved organic matter (DOM) composition varies over space and time, with a multitude of factors driving the presence or absence of each compound found in the complex DOM mixture. Compounds ubiquitously present across a wide range of river systems (hereafter termed core compounds) may differ in chemical composition and reactivity from compounds present in only a few settings (hereafter termed satellite compounds). Here, we investigated the spatial patterns in DOM molecular formulae presence (occupancy) in surface water and sediments across 97 river corridors at a continental scale using the “Worldwide Hydrobiogeochemical Observation Network for Dynamic River Systems—WHONDRS” research consortium.

    Methods

    We used a novel data-driven approach to identify core and satellite compounds and compared their molecular properties identified with Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS).

    Results

    We found that core compounds clustered around intermediate hydrogen/carbon and oxygen/carbon ratios across both sediment and surface water samples, whereas the satellite compounds varied widely in their elemental composition. Within surface water samples, core compounds were dominated by lignin-like formulae, whereas protein-like formulae dominated the core pool in sediment samples. In contrast, satellite molecular formulae were more evenly distributed between compound classes in both sediment and water molecules. Core compounds found in both sediment and water exhibited lower molecular mass, lower oxidation state, and a higher degree of aromaticity, and were inferred to be more persistent than global satellite compounds. Higher putative biochemical transformations were found in core than satellite compounds, suggesting that the core pool was more processed.

    Discussion

    The observed differences in chemical properties of core and satellite compounds point to potential differences in their sources and contribution to DOM processing in river corridors. Overall, our work points to the potential of data-driven approaches separating rare and common compounds to reduce some of the complexity inherent in studying riverine DOM.

     
    more » « less
  5. Abstract

    Climatic changes are transforming northern high‐latitude watersheds as permafrost thaws and vegetation and hydrology shift. These changes have implications for the source and reactivity of riverine dissolved organic matter (DOM), and thus biogeochemical cycling, across northern high‐latitude systems. In this study, we use a latitudinal gradient from the interior to the North Slope of Alaska to evaluate seasonal and landscape drivers of DOM composition in this changing Arctic environment. To assess DOM source and composition, we used absorbance and fluorescence spectroscopy to measure DOM optical properties, lignin biomarker analyses to evaluate vascular plant contribution to the DOM pool, and Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) to assess DOM compositional changes. We found that seasonal inputs of DOM at elevated discharge during the freshet were typically more aromatic in nature with higher lignin concentrations and carbon‐normalized yields. Landscape characteristics were a major control on dissolved organic carbon (DOC) yields and DOM composition. More northern watersheds, which were steeper, underlain by continuous permafrost, and exhibited a mix of barren and lichen/moss vegetation cover, exported less DOC with relatively more aliphatic DOM compared to more southern basins. Watersheds with deeper active layers exported DOM that was more aromatic with higher polyphenolic and condensed aromatic relative abundances and lignin yields, likely sourced from shallow subsurface flow during high discharge periods. However, contributions from deeper groundwater to streamflow is expected to increase, which would increase interactions of groundwater with mineral soils and decrease aromatic DOM contributions during periods of low discharge.

     
    more » « less