This paper investigates when one can efficiently recover an approximate Nash Equilibrium (NE) in offline congestion games. The existing dataset coverage assumption in offline general-sum games inevitably incurs a dependency on the number of actions, which can be exponentially large in congestion games. We consider three different types of feedback with decreasing revealed information. Starting from the facility-level (a.k.a., semi-bandit) feedback, we propose a novel one-unit deviation coverage condition and show a pessimism-type algorithm that can recover an approximate NE. For the agent-level (a.k.a., bandit) feedback setting, interestingly, we show the one-unit deviation coverage condition is not sufficient. On the other hand, we convert the game to multi-agent linear bandits and show that with a generalized data coverage assumption in offline linear bandits, we can efficiently recover the approximate NE. Lastly, we consider a novel type of feedback, the game-level feedback where only the total reward from all agents is revealed. Again, we show the coverage assumption for the agent-level feedback setting is insufficient in the game-level feedback setting, and with a stronger version of the data coverage assumption for linear bandits, we can recover an approximate NE. Together, our results constitute the first study of offline congestion games and imply formal separations between different types of feedback.
more »
« less
Reconstruction of small and extended regions in EIT with a Robin transmission condition
Abstract We consider an inverse shape problem coming from electrical impedance tomography with a Robin transmission condition. In general, a boundary condition of Robin type models corrosion. In this paper, we study two methods for recovering an interior corroded region from electrostatic data. We consider the case where we have small volume and extended regions. For the case where the region has small volume, we will derive an asymptotic expansion of the current gap operator and prove that a MUSIC-type algorithm can be used to recover the region. In the case where one has an extended region, we will show that the regularized factorization method can be used to recover said region. Numerical examples will be presented for both cases in two dimensions in the unit circle.
more »
« less
- Award ID(s):
- 2107891
- PAR ID:
- 10424330
- Date Published:
- Journal Name:
- Inverse Problems
- Volume:
- 38
- Issue:
- 10
- ISSN:
- 0266-5611
- Page Range / eLocation ID:
- 105009
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary We present a spatially varying Robin interface condition for solving fluid‐structure interaction problems involving incompressible fluid flows and nonuniform flexible structures. Recent studies have shown that for uniform structures with constant material and geometric properties, a constant one‐parameter Robin interface condition can improve the stability and accuracy of partitioned numerical solution procedures. In this work, we generalize the parameter to a spatially varying function that depends on the structure's local material and geometric properties, without varying the exact solution of the coupled fluid‐structure system. We present an algorithm to implement the Robin interface condition in an embedded boundary method for coupling a projection‐based incompressible viscous flow solver with a nonlinear finite element structural solver. We demonstrate the numerical effects of the spatially varying Robin interface condition using two example problems: a simplified model problem featuring a nonuniform Euler‐Bernoulli beam interacting with an inviscid flow and a generalized Turek‐Hron problem featuring a nonuniform, highly flexible beam interacting with a viscous laminar flow. Both cases show that a spatially varying Robin interface condition can clearly improve numerical accuracy (by up to two orders of magnitude in one instance) for the same computational cost. Using the second example problem, we also demonstrate and compare two models for determining the local value of the combination function in the Robin interface condition.more » « less
-
Particle-laden slurries are pervasive in both natural and industrial settings, whenever particles are suspended or transported in a fluid. Previous literature has investigated the case of a single species of negatively buoyant particles suspended in a viscous fluid. On an incline, three distinct regimes emerge depending on the particle concentration and inclination angle: settled (where particles settle and there is a pure fluid front), well-mixed (where particle concentration is constant throughout), and ridged (where a particle-rich ridge leads the flow). Recently, the same three regimes were also found for constant volume two species bidensity slurries. We extend the literature on bidensity slurries by presenting results on constant volume and a new type of initial condition: constant flux, where slurry is pumped onto the incline at a constant rate. We present front positions of the slurries and compare them to theoretical predictions. In addition, height profiles (film thicknesses) are also presented for the constant flux case, showing the distinct behavior of the ridged regime. We find that for constant flux conditions the settled regime forms for small particle volume fractions and inclination angles while the ridged regime forms for large corresponding values. Intermediate values of these two parameters are shown to produce a well-mixed regime.KEYWORDS: Thin Films; Particle-Laden Flow; Multiphase Fluids; Interfacial Flows; Particle Segregationmore » « less
-
We investigate the impact of low-rank interference on the problem of distinguishing between two seabed types using ambient sound as an acoustic source. The resulting frequency-domain snapshots follow a zero-mean, circularly-symmetric Gaussian distribution, where each seabed type has a unique covariance matrix. Detecting changes in the seabed type across distinct spatial locations can be formulated as a two-sample hypothesis test for equality of covariance, for which Box's M-test is the classical solution. Interference sources such as passing ships result in additive noise with a low-rank covariance that can reduce the performance of hypothesis testing. We first present a method to construct a worst-case interference field, making hypothesis testing as difficult as possible. We then provide an alternating optimization procedure to recover the interference-free covariance matrix. Experiments on synthetic data show that the optimized interferer can greatly reduce hypothesis testing performance, while our recovery method perfectly eliminates this interference for a sufficiently small interference rank. On real data from the New England Shelf Break Acoustics experiment, we show that our approach successfully mitigates interference, allowing for accurate hypothesis testing and improving bottom loss estimation.more » « less
-
Crowdsourcing has been widely adopted to perform large projects suitable for human participation, in which tasks are usually distributed to workers. Many such projects involve classification/labeling certain collections of items through semisupervised clustering, in which queries on small subsets of the items are assigned to workers in the crowd. The answers are collected by a taskmaster and the goal is to fully recover the labels. This problem can be modeled as a sparsely encoded source coding problem, where each query answer, regarded as a code bit, is the XOR of a small number of labels, as source information bits. While the problem of designing compression/source coding schemes achieving Shannon’s optimal compression rate is very well-studied, a few have considered sparsely encoded schemes. In this paper we leverage the connections between this problem and well-studied codes with sparse representations for the channel coding problem to provide querying schemes with almost optimal number of queries, each of which involving only a constant number of labels. We also extend this scenario to the case where some workers can be unresponsive. For this case, we propose querying schemes where each query involves only log n items, where n is the total number of items to be labeled. Furthermore, we consider classification of two correlated labeling systems and provide two-stage querying schemes with almost optimal number of queries each involving a constant number of labels.more » « less
An official website of the United States government

