skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabrication Tolerant Inverse Design Grating Couplers for Scalable Trapped Ion Quantum Computing
A fabrication tolerant Si grating coupler for 1.762 µm operation is optimized with inverse design, allowing for −30 dB crosstalk between a pair of133Ba+trapped ion qubits within expected fabrication variation.  more » « less
Award ID(s):
2016245
PAR ID:
10424738
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Conference on Lasers and Electro-Optics
Page Range / eLocation ID:
JW3A.23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The design and development of solar‐blind photodetectors utilizing ultrawide bandgap semiconductors have garnered significant attention due to their extensive utility in specialty commercial sectors. Solar‐blind photodetectors that display excellent photosensitivity, fast response time and are produced using cost‐effective fabrication steps will fulfill the performance demands in relevant applications. Herein, highly textured Sn‐doped Ga2O3thin film metal‐semiconductor‐metal type deep‐UV photodetectors using a commercially scalable magnetron sputtering method are reported. Commercially achievable growth and fabrication steps are intentionally chosen to demonstrate an economically viable photodetection workflow without compromising the device's performance. In‐depth structural, morphological, chemical, and optical characterization are reported to optimize the configuration for further device fabrication and testing. Under transient triggering circumstances, a fast response time of ≈500 ms is reported, accompanied by a responsivity of ≈60.5 A W−1. The detectivity, external quantum efficiency, and photo‐to‐dark current ratio values are reported as 1.6 × 1013Jones, 2.8 × 104%, and 17.4, respectively. The overall device performance and cost‐effective fabrication process for solar‐blind UV photodetection using Sn‐doped Ga2O3is promising. The approach holds promise for significant implications toward the development of electronics capable of functioning in extreme environments and exhibits substantial potential for enhancing low‐cost UV photodetector technology. 
    more » « less
  2. Abstract The demand of cost‐effective fabrication of printed flexible transistors has dramatically increased in recent years due to the need for flexible interface devices for various application including e‐skins, wearables, and medical patches. In this study, electrohydrodynamic (EHD) printing processes are developed to fabricate all the components of polymer‐based organic thin film transistors (OTFTs), including source/drain and gate electrodes, semiconductor channel, and gate dielectrics, which streamline the fabrication procedure for flexible OTFTs. The flexible transistors with top‐gate‐bottom‐contact configuration are fabricated by integrating organic semiconductor (i.e., poly(3‐hexylthiophene‐2,5‐diyl) blended with small molecule 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene), conductive polymer (i.e., poly (3,4‐ethylenedioxythiophene) polystyrene sulfonate), and ion‐gel dielectric. These functional inks are carefully designed with orthogonal solvents to enable their compatible printing into multilayered flexible OTFTs. The EHD printing process of each functional component is experimentally characterized and optimized. The fully EHD‐printed OTFTs show good electrical performance with mobility of 2.86 × 10−1cm2V−1s−1and on/off ratio of 104, and great mechanical flexibility with small mobility change at bending radius of 6 mm and stable transistor response under hundreds of bending cycles. The demonstrated all printing‐based fabrication process provides a cost‐effective route toward flexible electronics with OTFTs. 
    more » « less
  3. Abstract Nanoparticles and nanofibers are widely used as components of polymer electrolytes for membranes in fuel cells, and many surface modification methods are reported. However, some fabrication techniques are complicated, and it is necessary to develop a simplified and precise control method. Herein, a facile fabrication method is reported for core–shell nanoparticles hierarchically coated with polymeric ionic liquids (PIL) and hydrophobic polymers as a material for polymer electrolytes. A hierarchical polymer layer on the surface of the SiO2nanoparticles is easily constructed by repeating the facile polymer‐coating technique based on precipitation polymerization several times. The highest proton conductivity of the core–shell nanoparticles is 1.3 × 10−2 S cm−1at 80 °C and 95% relative humidity. Although the hydrophobic polymers coated as a protective layer reduce the proton conductivity, the formation of the PIL enhances the proton conductivity in various temperature and humidity environments. Therefore, the proposed method enables the facile fabrication of polymer layers with multiple functions, such as a proton‐conductive PIL layer and hydrophobic polymer layers as protective layers on the surface of the nanoparticles. Furthermore, they are expected to be applied to energy supply and gas separation, including polyelectrolytes, for the realization of a sustainable society. 
    more » « less
  4. Abstract Complex graphene electrode fabrication protocols including conventional chemical vapor deposition and graphene transfer techniques as well as more recent solution‐phase printing and postprint annealing methods have hindered the wide‐scale implementation of electrochemical devices including solid‐state ion‐selective electrodes (ISEs). Herein, a facile graphene ISE fabrication technique that utilizes laser induced graphene (LIG), formed by converting polyimide into graphene by a CO2laser and functionalization with ammonium ion (NH4+) and potassium ion (K+) ion‐selective membranes, is demonstrated. The electrochemical LIG ISEs exhibit a wide sensing range (0.1 × 10−3–150 × 10−3mfor NH4+and 0.3 × 10−3–150 × 10−3mfor K+) with high stability (minimal drop in signal after 3 months of storage) across a wide pH range (3.5–9.0). The LIG ISEs are also able to monitor the concentrations of NH4+and K+in urine samples (29–51% and 17–61% increase for the younger and older patient; respectively, after dehydration induction), which correlate well with conventional hydration status measurements. Hence, these results demonstrate a facile method to perform in‐field ion sensing and are the first steps in creating a protocol for quantifying hydration levels through urine testing in human subjects. 
    more » « less
  5. Abstract 2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2from 59 K (bulk) to 28 K (monolayer). 
    more » « less