skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-sensor Corrosion Growth Modeling with Latent Variables Using Hierarchical Clustering and Vector Autoregression Model
Modeling corrosion growth for complex systems such as the oil refinery system is a major challenge since the corrosion process of oil and gas pipelines are inherently stochastic and depends on many factors including exposures to environmental conditions, operating conditions, and electrochemical reactions. Moreover, the number of sensors is usually limited, and sensor data are incomplete and scattering, which hinders the capability of capturing the corrosion growth behaviors. Therefore, this paper proposes Multi-sensor Corrosion Growth Model with Latent Variables to predict the corrosion growth process in oil refinery piping. The proposed model is a combination of the hierarchical clustering algorithm and the vector autoregression (VAR) model. The clustering algorithm aims to find the hidden (i.e., latent) data clusters of the measured time series data, from which the time series from the same cluster will be included in the VAR model to predict the corrosion depth from multiple sensors. The model can capture the relationship between sensor time series data and identify latent variables. A real case study of an oil refinery system, in which in-line inspection (ILI) data were collected, was utilized to validate model. Regarding corrosion growth prediction, the paper compared the prediction accuracy of VAR model with other three forms of power law model, which is widely accepted to expect the time-dependent depth of corrosion such as power function (PF), PF with initiation time of corrosion (PFIT), and PF with initiation time of corrosion and covariates (PFCOV). The results showed that VAR model has the lowest prediction error based on the mean absolute percentage error (MAPE) evaluation for test data. Finally, the proposed model is believed to be useful for dealing with a complex system that has a variety of corrosion growth behaviors, such as the oil refinery system, as well as it can be applied in other real-time applications.  more » « less
Award ID(s):
2119691
PAR ID:
10424993
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2023 Annual Reliability and Maintainability Symposium (RAMS)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators. 
    more » « less
  2. null (Ed.)
    A factor-augmented vector autoregressive (FAVAR) model is defined by a VAR equation that captures lead-lag correlations amongst a set of observed variables X and latent factors F, and a calibration equation that relates another set of observed variables Y with F and X. The latter equation is used to estimate the factors that are subsequently used in estimating the parameters of the VAR system. The FAVAR model has become popular in applied economic research, since it can summarize a large number of variables of interest as a few factors through the calibration equation and subsequently examine their influence on core variables of primary interest through the VAR equation. However, there is increasing need for examining lead-lag relationships between a large number of time series, while incorporating information from another high-dimensional set of variables. Hence, in this paper we investigate the FAVAR model under high-dimensional scaling. We introduce an appropriate identification constraint for the model parameters, which when incorporated into the formulated optimization problem yields estimates with good statistical properties. Further, we address a number of technical challenges introduced by the fact that estimates of the VAR system model parameters are based on estimated rather than directly observed quantities. The performance of the proposed estimators is evaluated on synthetic data. Further, the model is applied to commodity prices and reveals interesting and interpretable relationships between the prices and the factors extracted from a set of global macroeconomic indicators. 
    more » « less
  3. To monitor the dynamic behavior of degrading systems over time, a flexible hierarchical discrete-time state-space model (SSM) is introduced that can mathematically characterize the stochastic evolution of the latent states (discrete, continuous, or hybrid) of degrading systems, dynamic measurements collected from condition monitoring sources (e.g., sensors with mixed-type out-puts), and the failure process. This flexible SSM is inspired by Bayesian hierarchical modeling and recurrent neural networks without imposing prior knowledge regarding the stochastic structure of the system dynamics and its variables. The temporal behavior of degrading systems and the relationship between variables of the corresponding system dynamics are fully characterized by stochastic neural networks without having to define parametric relationships/distributions between deterministic and stochastic variables. A Bayesian filtering-based learning method is introduced to train the structure of the proposed framework with historical data. Also, the steps to utilize the proposed framework for inference and prediction of the latent states and sensor outputs are dis-cussed. Numerical experiments are provided to demonstrate the application of the proposed framework for degradation system modeling and monitoring. 
    more » « less
  4. Accurate prediction of the transmission of epidemic diseases such as COVID-19 is crucial for implementing effective mitigation measures. In this work, we develop a tensor method to predict the evolution of epidemic trends for many regions simultaneously. We construct a 3-way spatio-temporal tensor (location, attribute, time) of case counts and propose a nonnegative tensor factorization with latent epidemiological model regularization named STELAR. Unlike standard tensor factorization methods which cannot predict slabs ahead, STELAR enables long-term prediction by incorporating latent temporal regularization through a system of discrete time difference equations of a widely adopted epidemiological model. We use latent instead of location/attribute-level epidemiological dynamics to capture common epidemic profile sub-types and improve collaborative learning and prediction. We conduct experiments using both county- and state level COVID-19 data and show that our model can identify interesting latent patterns of the epidemic. Finally, we evaluate the predictive ability of our method and show superior performance compared to the baselines, achieving up to 21% lower root mean square error and 25% lower mean absolute error for county-level prediction. 
    more » « less
  5. Abstract A multiphysics phase field framework for coupled electrochemical and elastoplastic behaviors is presented, where the evolution of complex solid-electrolyte is described by the variation of the phase field variable with time. The solid-electrolyte interface kinetics nonlinearly depends on the thermodynamic driving force and can be accelerated by mechanical straining according to the film rupture-dissolution mechanism. A number of examples in two- and three- dimensions are demonstrated based on the finite element-based MOOSE framework. The model successfully captures the pit-to-crack transition under simultaneous electrochemical and mechanical effects. The crack initiation and growth has been demonstrated to depend on a variety of materials properties. The coupled corrosion and crystal plasticity framework also predict the crack initiation away from the perpendicular to the loading direction. 
    more » « less