skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tunable coupling in magnetic thin film heterostructures with a magnetic phase transition
Abstract The magnetic properties of permalloy-based trilayers of the form Py 0.8 Cu 0.2 /Py 0.4 Cu 0.6 /Py/IrMn were studied as the spacer layer undergoes a paramagnetic to ferromagnetic phase transition. We find the coupling between the free Py 0.8 Cu 0.2 layer and the exchange bias pinned Py to be strongly temperature-dependent: there is negligible coupling above the Curie temperature of the Py 0.4 Cu 0.6 spacer layer, strong ferromagnetic coupling below that temperature, and a tunable coupling between these extremes. Polarized neutron reflectometry was used to measure the depth profile of the magnetic order in the system, allowing us to correlate the order parameter with the coupling strength. The thickness dependence shows that these are interface effects with an inverse relationship to thickness, and that there is a magnetic proximity effect that enhances the Curie temperature of the spacer layer with characteristic length scale of about 7 nm. As a demonstration of potential functionality of such a system, the structure is shown to spontaneously flip from the antiparallel to parallel magnetic configuration once the spacer layer has developed long-range magnetic order.  more » « less
Award ID(s):
1609066
PAR ID:
10425048
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We report on an all-optical investigation of coupled spin excitation modes in a series of magnetic trilayer structures. Using time-resolved magneto-optic Kerr effect (tr-MOKE) magnetometry, we observe multi-mode coherent spin excitations in [Formula: see text]/Ru/[Formula: see text] multilayers even though the tr-MOKE optical detection is sensitive only to the [Formula: see text] magnetization dynamics. Frequency shifts of the different modes indicate that the coupling between the [Formula: see text] and [Formula: see text] layers varies from anti-ferromagnetic to ferromagnetic to uncoupled as the Ru spacer layer thickness is increased from 8 Å to 200 Å. The lifetime of the high frequency coherent oscillations in the [Formula: see text] layer increases by over 200%–300% even in the case of uncoupled [Formula: see text] and [Formula: see text] layers with a 200 Å thick Ru spacer. The results suggest an additional method to decrease the damping of high-moment alloys in layered magnetic nanostructures. 
    more » « less
  2. Spin-orbit torques in ferromagnet/nonmagnet/ferromagnet trilayers are studied using a combination of symmetry analysis, circuit theory, semiclassical simulations, and first-principles calculations using the nonequilibrium Green's function method with supercell disorder averaging. We focus on unconventional processes involving the interplay between the two ferromagnetic layers, which are classified into direct and indirect mechanisms. The direct mechanism involves spin current generation by one ferromagnetic layer and its subsequent absorption by the other. In the indirect mechanism, the in-plane spin-polarized current from one ferromagnetic layer “leaks” into the other layer, where it is converted into an out-of-plane spin current and reabsorbed by the original layer. The direct mechanism results in a predominantly dampinglike torque, which damps the magnetization towards a certain direction 𝐬_𝑑. The indirect mechanism results in a predominantly fieldlike torque with respect to a generally different direction 𝐬_𝑓. Similarly to the current-in-plane giant magnetoresistance, the indirect mechanism is only active if the thickness of the nonmagnetic spacer is smaller than or comparable to the mean free path. Numerical calculations for a semiclassical model based on the Boltzmann equation confirm the presence of both direct and indirect mechanisms of spin current generation. First-principles calculations reveal sizable unconventional spin-orbit torques in Co/Cu/Co, Py/Cu/Py, and Co/Pt/Co trilayers and provide strong evidence of indirect spin current generation. 
    more » « less
  3. Abstract While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe 2 , a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature ( T C ) up to 300 K, an atomic magnetic moment of ~0.21  $${\mu }_{{\rm{B}}}$$ μ B /Cr and perpendicular magnetic anisotropy (PMA) constant ( K u ) of 4.89 × 10 5  erg/cm 3 at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer ( T C  ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe 2 films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices. 
    more » « less
  4. Here we report a systematic research on effects of Fe and Cu upon properties relevant for the magnetic shape memory effect of Ni–Mn–Ga ferromagnetic shape memory alloys. Fe and Cu were identified as elements with potential synergism to increase the martensite transformation temperature of Ni–Mn–Ga magnetic shape memory (MSM) alloys. Eighteen Ni–Mn–Ga–Fe–Cu alloys with different systematic trends in substituting the ternary elements with Cu and Fe have been investigated. We found a method to describe the effectiveness of Ni, Mn, and Cu upon raising the martensitic transformation temperature, lowering the saturation magnetization, and varying the Curie temperature. We find the martensite transformation temperature most influenced by the Ni content, followed by Mn, with a smaller effect of Cu. The saturation magnetization decreases with similar coefficients for Mn and Cu alloying. The Curie temperature monotonously decreases with Mn, but not Cu. The 10M martensite structure is stable for the composition Ni46.5Mn25?XGa25-X-YFe3.5CuY with X and Y range of 0–5.7, and 0.8–3.0. Used in combination with the total e/a, the elemental e/a-ratio gives some insight into the complex behavior of quinary MSM alloys and is a useful method of analyzing MSM alloys for improved functional properties. 
    more » « less
  5. Abstract Recent demonstrations of moiré magnetism, featuring exotic phases with noncollinear spin order in the twisted van der Waals (vdW) magnet chromium triiodide CrI3, have highlighted the potential of twist engineering of magnetic (vdW) materials. However, the local magnetic interactions, spin dynamics, and magnetic phase transitions within and across individual moiré supercells remain elusive. Taking advantage of a scanning single-spin magnetometry platform, here we report observation of two distinct magnetic phase transitions with separate critical temperatures within a moiré supercell of small-angle twisted double trilayer CrI3. By measuring temperature-dependent spin fluctuations at the coexisting ferromagnetic and antiferromagnetic regions in twisted CrI3, we explicitly show that the Curie temperature of the ferromagnetic state is higher than the Néel temperature of the antiferromagnetic one by ~10 K. Our mean-field calculations attribute such a spatial and thermodynamic phase separation to the stacking order modulated interlayer exchange coupling at the twisted interface of moiré superlattices. 
    more » « less