skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Investigating Speaker Diarization of Endangered Language Data
The task of speaker diarization aims to determine which speakers spoke when in a recording. Such functionality could help to accelerate work in endangered languages by facilitating transcription and semi-automatically extracting useful meta-data to enrich language archives. However, there has been little work on speaker diarization for low-resource or endangered languages. This work explores three neural approaches to speaker diarization applied to data sets drawn from endangered language archives. We find consistent improvements for recent neural x-vector models over earlier approaches. We also assess the factors which impact performance across models and data sets, with a focus on the challenging characteristics of endangered language recordings.  more » « less
Award ID(s):
1760475
PAR ID:
10425540
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the Sixth Workshop on the Use of Computational Methods in the Study of Endangered Languages
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent developments in deep learning strategies have revolutionized Speech and Language Technologies(SLT). Deep learning models often rely on massive naturalistic datasets to produce the necessary complexity required for generating superior performance. However, most massive SLT datasets are not publicly available, limiting the potential for academic research. Through this work, we showcase the CRSS-UTDallas led efforts to recover, digitize, and openly distribute over 50,000 hrs of speech data recorded during the 12 NASA Apollo manned missions, and outline our continuing efforts to digitize and create meta-data through diarization of the remaining 100,000hrs. We present novel deep learning-based speech processing solutions developed to extract high-level information from this massive dataset. Fearless-Steps APOLLO resource is a 50,000 hrs audio collection from 30-track analog tapes originally used to document Apollo missions 1,7,8,10,11,&13. A customized tape read-head developed to digitize all 30 channels simultaneously has been deployed to expedite digitization of remaining mission tapes. Diarized transcripts for these unlabeled audio communications have also been generated to facilitate open research from speech sciences, historical archives, education, and speech technology communities. Robust technologies developed to generate human-readable transcripts include: (i) speaker diarization, (ii) speaker tracking, and (iii) text output from speech recognition systems. 
    more » « less
  2. Calzolari, Nicoletta; Huang, Chu-Ren; Kim, Hansaem; Pustejovsky, James; Wanner, Leo; Choi, Key-Sun; Ryu, Pum-Mo; Chen, Hsin-Hsi; Donatelli, Lucia; Ji, Heng (Ed.)
    "Multilingual neural machine translation (MNMT) jointly trains a shared model for translation with multiple language pairs. However, traditional subword-based MNMT approaches suffer from out-of-vocabulary (OOV) issues and representation bottleneck, which often degrades translation performance on certain language pairs. While byte tokenization is used to tackle the OOV problems in neural machine translation (NMT), until now its capability has not been validated in MNMT. Additionally, existing work has not studied how byte encoding can benefit endangered language translation to our knowledge. We propose a byte-based multilingual neural machine translation system (BMNMT) to alleviate the representation bottleneck and improve translation performance in endangered languages. Furthermore, we design a random byte mapping method with an ensemble prediction to enhance our model robustness. Experimental results show that our BMNMT consistently and significantly outperforms subword/word-based baselines on twelve language pairs up to +18.5 BLEU points, an 840{\%} relative improvement.", 
    more » « less
  3. Over the past three decades the field of linguistics has refocused attention on endangered languages, and enormous strides have been made to document these languages and develop archive infrastructure for language data. Although the potential for language archives to support language renewal efforts has often been tacitly assumed, much greater attention has been given to the preservation of data than to access and utilization. Documentation activities are imagined as a race against time to get language data into a lasting form before the last speakers pass away. Here I describe three examples of efforts which are working to engage with language communities and increase the accessibility and usability of language resources. Though not necessarily representative, these efforts suggest ways in which linguists, archivists, and communities can collaborate to support digital return. 
    more » « less
  4. The application of deep learning to automatic speech recognition (ASR) has yielded dramatic accuracy increases for languages with abundant training data, but languages with limited training resources have yet to see accuracy improvements on this scale. In this paper, we compare a fully convolutional approach for acoustic modelling in ASR with a variety of established acoustic modeling approaches. We evaluate our method on Seneca, a low-resource endangered language spoken in North America. Our method yields word error rates up to 40% lower than those reported using both standard GMM-HMM approaches and established deep neural methods, with a substantial reduction in training time. These results show particular promise for languages like Seneca that are both endangered and lack extensive documentation. 
    more » « less
  5. Speech and language development are early indicators of overall analytical and learning ability in children. The preschool classroom is a rich language environment for monitoring and ensuring growth in young children by measuring their vocal interactions with teachers and classmates. Early childhood researchers are naturally interested in analyzing naturalistic vs controlled lab recordings to measure both quality and quantity of such interactions. Unfortunately, present-day speech technologies are not capable of addressing the wide dynamic scenario of early childhood classroom settings. Due to the diversity of acoustic events/conditions in such daylong audio streams, automated speaker diarization technology would need to be advanced to address this challenging domain for segmenting audio as well as information extraction. This study investigates alternate deep learning-based lightweight, knowledge-distilled, diarization solutions for segmenting classroom interactions of 3–5 years old children with teachers. In this context, the focus on speech-type diarization which classifies speech segments as being either from adults or children partitioned across multiple classrooms. Our lightest CNN model achieves a best F1-score of ∼76.0% on data from two classrooms, based on dev and test sets of each classroom. It is utilized with automatic speech recognition-based re-segmentation modules to perform child-adult diarization. Additionally, F1-scores are obtained for individual segments with corresponding speaker tags (e.g., adult vs child), which provide knowledge for educators on child engagement through naturalistic communications. The study demonstrates the prospects of addressing educational assessment needs through communication audio stream analysis, while maintaining both security and privacy of all children and adults. The resulting child communication metrics have been used for broad-based feedback for teachers with the help of visualizations. 
    more » « less