skip to main content


Title: Degeneracy Removal of Spin Bands in Collinear Antiferromagnets with Non‐Interconvertible Spin‐Structure Motif Pair
Abstract

Energy bands in antiferromagnets are supposed to be spin degenerate in the absence of spin–orbit coupling (SOC). Recent studies have identified formal symmetry conditions for antiferromagnetic crystals in which this degeneracy can be lifted, spin splitting,even in the vanishing SOC (i.e., non‐relativistic) limit. Materials having such symmetries could enable spin‐split antiferromagnetic spintronics without the burden of using heavy‐atom compounds. However, the symmetry conditions that involve spin and magnetic symmetry are not always effective as practical material selection filters. Furthermore, these symmetry conditions do not readily disclose trends in the magnitude and momentum dependence of the spin‐splitting energy. Here, it is shown that the formal symmetry conditions enabling spin‐split antiferromagnets can be interpreted in terms of local motif pairs, such as octahedra or tetrahedra, each carrying opposite magnetic moments. Collinear antiferromagnets with such a spin‐structure motif pair, whose components interconvert by neither translation nor spatial inversion, will show spin splitting. Such a real‐space motif‐based approach enables an easy way to identify and design materials (illustrated in real example materials) having spin splitting without the need for SOC, and offers insights into the momentum dependence and magnitude of the spin splitting.

 
more » « less
NSF-PAR ID:
10425592
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
35
Issue:
31
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Many textbook physical effects in crystals are enabled by some specific symmetries. In contrast to such ‘apparent effects’, ‘hidden effect X’ refers to the general condition where the nominal global system symmetry would disallow the effect X, whereas the symmetry of local sectors within the crystal would enable effect X. Known examples include the hidden Rashba and/or hidden Dresselhaus spin polarization that require spin-orbit coupling, but unlike their apparent counterparts are demonstrated to exist in non-magnetic systems even in inversion-symmetric crystals. Here, we discuss hidden spin polarization effect in collinear antiferromagnets without the requirement for spin-orbit coupling (SOC). Symmetry analysis suggests that antiferromagnets hosting such effect can be classified into six types depending on the global vs local symmetry. We identify which of the possible collinear antiferromagnetic compounds will harbor such hidden polarization and validate these symmetry enabling predictions with first-principles density functional calculations for several representative compounds. This will boost the theoretical and experimental efforts in finding new spin-polarized materials.

     
    more » « less
  2. null (Ed.)
    Spin-orbit coupling (SOC) is a relativistic effect, where an electron moving in an electric field experiences an effective magnetic field in its rest frame. In crystals without inversion symmetry, it lifts the spin degeneracy and leads to many magnetic, spintronic, and topological phenomena and applications. In bulk materials, SOC strength is a constant. Here, we demonstrate SOC and intrinsic spin splitting in atomically thin InSe, which can be modified over a broad range. From quantum oscillations, we establish that the SOC parameter α is thickness dependent; it can be continuously modulated by an out-of-plane electric field, achieving intrinsic spin splitting tunable between 0 and 20 meV. Unexpectedly, α could be enhanced by an order of magnitude in some devices, suggesting that SOC can be further manipulated. Our work highlights the extraordinary tunability of SOC in 2D materials, which can be harnessed for in operando spintronic and topological devices and applications. 
    more » « less
  3. Abstract

    Electric currents carrying a net spin polarization are widely used in spintronics, whereas globally spin-neutral currents are expected to play no role in spin-dependent phenomena. Here we show that, in contrast to this common expectation, spin-independent conductance in compensated antiferromagnets and normal metals can be efficiently exploited in spintronics, provided their magnetic space group symmetry supports a non-spin-degenerate Fermi surface. Due to their momentum-dependent spin polarization, such antiferromagnets can be used as active elements in antiferromagnetic tunnel junctions (AFMTJs) and produce a giant tunneling magnetoresistance (TMR) effect. Using RuO2as a representative compensated antiferromagnet exhibiting spin-independent conductance along the [001] direction but a non-spin-degenerate Fermi surface, we design a RuO2/TiO2/RuO2(001) AFMTJ, where a globally spin-neutral charge current is controlled by the relative orientation of the Néel vectors of the two RuO2electrodes, resulting in the TMR effect as large as ~500%. These results are expanded to normal metals which can be used as a counter electrode in AFMTJs with a single antiferromagnetic layer or other elements in spintronic devices. Our work uncovers an unexplored potential of the materials with no global spin polarization for utilizing them in spintronics.

     
    more » « less
  4. Spin textures, such as magnetic domain walls and skyrmions, have the potential to revolutionize electronic devices by encoding information bits. Although recent advancements in ferromagnetic films have led to promising device prototypes, their widespread implementation has been hindered by material-related drawbacks. Antiferromagnetic spin textures, however, offer a solution to many of these limitations, paving the way for faster, smaller, more energy-efficient, and more robust electronics. The functionality of synthetic antiferromagnets, comprised of two or more magnetic layers separated by spacers, may be easily manipulated by making use of different materials as well as interface engineering. In this Perspective article, we examine the challenges and opportunities presented by spin textures in synthetic antiferromagnets and propose possible directions and prospects for future research in this burgeoning field. 
    more » « less
  5. Abstract

    Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

     
    more » « less