skip to main content


Title: A Heterogeneous Schelling Model for Wealth Disparity and its Effect on Segregation
The Schelling model of segregation was introduced in economics to show how micro-motives can influence macro-behavior. Agents on a lattice have two colors and try to move to a different location if the number of their neighbors with a different color exceeds some threshold. Simulations reveal that even such mild local color preferences, or homophily, are sufficient to cause segregation. In this work, we propose a stochastic generalization of the Schelling model, based on both race and wealth, to understand how carefully architected placement of incentives, such as urban infrastructure, might affect segregation. In our model, each agent is assigned one of two colors along with a label, rich or poor. Further, we designate certain vertices on the lattice as “urban sites,” providing civic infrastructure that most benefits the poorer population, thus incentivizing the occupation of such vertices by poor agents of either color. We look at the stationary distribution of a Markov process reflecting these preferences to understand the long-term effects. We prove that when incentives are large enough, we will have ”urbanization of poverty,” an observed effect whereby poor people tend to congregate on urban sites. Moreover, even when homophily preferences are very small, if the incentives are large and there is income inequality in the two-color classes, we can get racial segregation on urban sites but integration on non-urban sites. In contrast, we find an overall mitigation of segregation when the urban sites are distributed throughout the lattice and the incentives for urban sites exceed the homophily biases. We prove that in this case, no matter how strong homophily preferences are, it will be exponentially unlikely that a configuration chosen from stationarity will have large, homogeneous clusters of agents of either color, suggesting we will have racial integration with high probability.  more » « less
Award ID(s):
2106687
NSF-PAR ID:
10425781
Author(s) / Creator(s):
;
Date Published:
Journal Name:
EAAMO '22: Equity and Access in Algorithms, Mechanisms, and Optimization
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper investigates the long-term impacts of the federal Home Owners’ Loan Corporation (HOLC) mortgage risk assessment maps on the spatial dynamics of recent income and racial distributions in California metropolitan areas over the 1990-2010 period. We combine historical HOLC boundaries with modern Census tract data and apply recently developed methods of spatial distribution dynamics to examine if legacy impacts are reflected in recent urban dynamics. Cities with HOLC assessments are found to have higher levels of isolation segregation than the non-HOLC group, but no difference in unevenness segregation between the two groups of cities are found. We find no difference in income or racial and ethnic distributional dynamics between the two groups of cities over the period. At the intra-urban scale, we find that the intersectionality of residing in a C or D graded tract that is also a low-income tract falls predominately upon the minority populations in these eight HOLC cities. Our findings indicate that neighborhoods with poor housing markets and high minority concentrations rarely experience a dramatic change in either their racial and ethnic or socioeconomic compositions—and that negative externalities (e.g. lower home prices and greater segregation levels) emanate from these neighborhoods, with inertia spilling over into nearby zones.

     
    more » « less
  2. Radio 2-colorings of graphs are a generalization of vertex colorings motivated by the problem of assigning frequency channels in radio networks. In a radio 2-coloring of a graph, vertices are assigned integer colors so that the color of two vertices u and v differ by at least 2 if u and v are neighbors, and by at least 1 if u and v have a common neighbor. Our work improves the best-known bounds for optimal radio 2-colorings of small hypercube graphs, a combinatorial problem that has received significant attention in the past. We do so by using automated reasoning techniques such as symmetry breaking and Cube and Conquer, obtaining that for n = 7 and n = 8, the coding-theory upper bounds of Whittlesey et al. (1995) are not tight. Moreover, we prove the answer for n = 7 to be either 12 or 13, thus making a substantial step towards answering an open problem by Knuth (2015). Finally, we include several combinatorial observations that might be useful for further progress, while also arguing that fully determining the answer for n = 7 will require new techniques. 
    more » « less
  3. How does skin color shape the social networks and integration pathways of phenotypically diverse immigrant groups? Focusing on Dominicans and Puerto Ricans, groups with considerable diversity across the Black-White color line, the authors explore whether migrants to the United States have greater color homophily in their primary social networks than nonmigrants in the sending societies. The authors analyze egocentric network data, including unique skin color measures for both 114 respondents and 1,702 alters. They test hypotheses derived from ethnic unifier theory and color line racialization theory. The data show evidence of color homophily among Dominicans but suggest that these patterns may be imported from the sending society rather than fostered by the U.S. context. Furthermore, the authors find that migrants’ skin color is associated with having ties to White or Black Americans but with different patterns for each ethnic group. The authors discuss the implications of these findings for economic mobility and U.S. racial hierarchies.

     
    more » « less
  4. Mettke-Hofmann, Claudia (Ed.)
    Chemically defended prey often advertise their toxins with bright and conspicuous colors. To understand why such colors are effective at reducing predation, we need to understand the psychology of key predators. In bird predators, there is evidence that individuals avoid novelty—including prey of novel colors (with which they have had no prior experience). Moreover, the effect of novelty is sometimes strongest for colors that are typically associated with aposematic prey (e.g., red, orange, yellow). Given these findings in the bird literature, color neophobia has been argued to be a driving force in the evolution of aposematism. However, no studies have yet asked whether invertebrate predators respond similarly to novel colors. Here, we tested whether naive lab-raised jumping spiders ( Habronattus pyrrithrix ) exhibit similar patterns of color neophobia to birds. Using color-manipulated living prey, we first color-exposed spiders to prey of two out of three colors (blue, green, or red), with the third color remaining novel. After this color exposure phase, we gave the spiders tests where they could choose between all three colors (two familiar, one novel). We found that H . pyrrithrix attacked novel and familiar-colored prey at equal rates with no evidence that the degree of neophobia varied by color. Moreover, we found no evidence that either prey novelty nor color (nor their interaction) had an effect on how quickly prey was attacked. We discuss these findings in the context of what is known about color neophobia in other animals and how this contributes to our understanding of aposematic signals. 
    more » « less
  5. We present and rigorously analyze the behavior of a distributed, stochastic algorithm for separation and integration in self-organizing particle systems, an abstraction of programmable matter. Such systems are composed of individual computational particles with limited memory, strictly local communication abilities, and modest computational power. We consider heterogeneous particle systems of two different colors and prove that these systems can collectively separate into different color classes or integrate, indifferent to color. We accomplish both behaviors with the same fully distributed, local, stochastic algorithm. Achieving separation or integration depends only on a single global parameter determining whether particles prefer to be next to other particles of the same color or not; this parameter is meant to represent external, environmental influences on the particle system. The algorithm is a generalization of a previous distributed, stochastic algorithm for compression (PODC '16), which can be viewed as a special case of separation where all particles have the same color. It is significantly more challenging to prove that the desired behavior is achieved in the heterogeneous setting, however, even in the bichromatic case we focus on. This requires combining several new techniques, including the cluster expansion from statistical physics, a new variant of the bridging argument of Miracle, Pascoe and Randall (RANDOM '11), the high-temperature expansion of the Ising model, and careful probabilistic arguments. 
    more » « less