Let { s j } j = 1 n \left \{ s_{j}\right \} _{j=1}^{n} be positive integers. We show that for any 1 ≤ L ≤ n , 1\leq L\leq n, ‖ ∏ j = 1 n ( 1 − z s j ) ‖ L ∞ ( | z | = 1 ) ≥ exp ( 1 2 e L ( s 1 s 2 … s L ) 1 / L ) . \begin{equation*} \left \Vert \prod _{j=1}^{n}\left ( 1-z^{s_{j}}\right ) \right \Vert _{L_{\infty }\left ( \left \vert z\right \vert =1\right ) }\geq \exp \left ( \frac {1}{2e}\frac {L}{\left ( s_{1}s_{2}\ldots s_{L}\right ) ^{1/L}}\right ) . \end{equation*} In particular, this gives geometric growth if a positive proportion of the { s j } \left \{ s_{j}\right \} are bounded. We also show that when the { s j } \left \{ s_{j}\right \} grow regularly and faster than j ( log j ) 2 + ε j\left ( \log j\right ) ^{2+\varepsilon } , some ε > 0 \varepsilon >0 , then the norms grow faster than exp ( ( log n ) 1 + δ ) \exp \left ( \left ( \log n\right ) ^{1+\delta }\right ) for some δ > 0 \delta >0 .
more »
« less
Global Gradient Estimate for a Divergence Problem and Its Application to the Homogenization of a Magnetic Suspension
"This paper generalizes the results obtained by the authors in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021) concerning the homogenization of a non-dilute suspension of magnetic particles in a viscous flow. More specifically, in this paper, a restrictive assumption on the coefficients of the coupled equation, made in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021), that significantly narrowed the applicability of the homogenization results obtained is relaxed and a new regularity of the solution of the fine-scale problem is proven. In particular, we obtain a global L∞-bound for the gradient of the solution of the scalar equation −divax∕$$\epsilon$$∇$$\phi$$\epsilon$$(x)=f(x){\$$}{\$$}- {\backslash}operatorname {\{}{\{}{\backslash}mathrm {\{}div{\}}{\}}{\}} {\backslash}left [ {\backslash}mathbf {\{}a{\}} {\backslash}left ( x/{\backslash}varepsilon {\backslash}right ){\backslash}nabla {\backslash}varphi ^{\{}{\backslash}varepsilon {\}}(x) {\backslash}right ] = f(x){\$$}{\$$}, uniform with respect to microstructure scale parameter $$\epsilon$${\thinspace}≪{\thinspace}1 in a small interval (0, $$\epsilon$$0), where the coefficient a is only piecewise H{\"o}lder continuous. Thenceforth, this regularity is used in the derivation of the effective response of the given suspension discussed in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021)."
more »
« less
- Award ID(s):
- 2110036
- PAR ID:
- 10425993
- Editor(s):
- Español, M
- Date Published:
- Journal Name:
- Association for Women in Mathematics series
- ISSN:
- 2364-5741
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The existence and stability of the Landau equation (1936) in a general bounded domain with a physical boundary condition is a long-outstanding open problem. This work proves the global stability of the Landau equation with the Coulombic potential in a general smooth bounded domain with the specular reflection boundary condition for initial perturbations of the Maxwellian equilibrium states. The highlight of this work also comes from the low-regularity assumptions made for the initial distribution. This work generalizes the recent global stability result for the Landau equation in a periodic box (Kim et al. in Peking Math J, 2020). Our methods consist of the generalization of the wellposedness theory for the Fokker–Planck equation (Hwang et al. SIAM J Math Anal 50(2):2194–2232, 2018; Hwang et al. Arch Ration Mech Anal 214(1):183–233, 2014) and the extension of the boundary value problem to a whole space problem, as well as the use of a recent extension of De Giorgi–Nash–Moser theory for the kinetic Fokker–Planck equations (Golse et al. Ann Sc Norm Super Pisa Cl Sci 19(1):253–295, 2019) and the Morrey estimates (Bramanti et al. J Math Anal Appl 200(2):332–354, 1996) to further control the velocity derivatives, which ensures the uniqueness. Our methods provide a new understanding of the grazing collisions in the Landau theory for an initial-boundary value problem.more » « less
-
Consider the Vlasov–Poisson–Landau system with Coulomb potential in the weakly collisional regime on a -torus, i.e. with . We prove that for sufficiently small (but independent of ), initial data which are -Sobolev space perturbations from the global Maxwellians lead to global-in-time solutions which converge to the global Maxwellians as . The solutions exhibit uniform-in- Landau damping and enhanced dissipation. Our main result is analogous to an earlier result of Bedrossian for the Vlasov–Poisson–Fokker–Planck equation with the same threshold. However, unlike in the Fokker–Planck case, the linear operator cannot be inverted explicitly due to the complexity of the Landau collision operator. For this reason, we develop an energy-based framework, which combines Guo’s weighted energy method with the hypocoercive energy method and the commuting vector field method. The proof also relies on pointwise resolvent estimates for the linearized density equation.more » « less
-
We formulate a plausible conjecture for the optimal Ehrhard-type inequality for convex symmetric sets with respect to the Gaussian measure. Namely, letting and , we conjecture that the function , given by (with an appropriate choice of a decomposition and coefficients ) satisfies, for all symmetric convex sets and , and any , We explain that this conjecture is “the most optimistic possible”, and is equivalent to the fact that for any symmetric convex set , itsGaussian concavity power is greater than or equal to , for some . We call the sets round -cylinders; they also appear as the conjectured Gaussian isoperimetric minimizers for symmetric sets, see Heilman [Amer. J. Math. 143 (2021), pp. 53–94]. In this manuscript, we make progress towards this question, and show that for any symmetric convex set in , where is the torsional rigidity of with respect to the Gaussian measure.Moreover, the equality holds if and only if for some and .As a consequence, we get where is a certain rational function of degree , the expectation is taken with respect to the restriction of the Gaussian measure onto , is the Minkowski functional of , and is the in-radius of . The result follows via a combination of some novel estimates, the method (previously studied by several authors, notably Kolesnikov and Milman [J. Geom. Anal. 27 (2017), pp. 1680–1702; Amer. J. Math. 140 (2018), pp. 1147–1185;Geometric aspects of functional analysis, Springer, Cham, 2017; Mem. Amer. Math. Soc. 277 (2022), v+78 pp.], Kolesnikov and the author [Adv. Math. 384 (2021), 23 pp.], Hosle, Kolesnikov, and the author [J. Geom. Anal. 31 (2021), pp. 5799–5836], Colesanti [Commun. Contemp. Math. 10 (2008), pp. 765–772], Colesanti, the author, and Marsiglietti [J. Funct. Anal. 273 (2017), pp. 1120–1139], Eskenazis and Moschidis [J. Funct. Anal. 280 (2021), 19 pp.]), and the analysis of the Gaussian torsional rigidity. As an auxiliary result on the way to the equality case characterization, we characterize the equality cases in the “convex set version” of the Brascamp-Lieb inequality, and moreover, obtain a quantitative stability version in the case of the standard Gaussian measure; this may be of independent interest. All the equality case characterizations rely on the careful analysis of the smooth case, the stability versions via trace theory, and local approximation arguments. In addition, we provide a non-sharp estimate for a function whose composition with is concave in the Minkowski sense for all symmetric convex sets.more » « less
-
We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « less
An official website of the United States government

