Abstract We observed strong tripartite magnon-phonon-magnon coupling in a two-dimensional periodic array of magnetostrictive nanomagnets deposited on a piezoelectric substrate, forming a 2D magnetoelastic “crystal”; the coupling occurred between two Kittel-type spin wave (magnon) modes and a (non-Kittel) magnetoelastic spin wave mode caused by a surface acoustic wave (SAW) (phonons). The strongest coupling occurred when the frequencies and wavevectors of the three modes matched, leading to perfect phase matching. We achieved this condition by carefully engineering the frequency of the SAW, the nanomagnet dimensions and the bias magnetic field that determined the frequencies of the two Kittel-type modes. The strong coupling (cooperativity factor exceeding unity) led to the formation of a new quasi-particle, called a binary magnon-polaron, accompanied by nearly complete (~100%) transfer of energy from the magnetoelastic mode to the two Kittel-type modes. This coupling phenomenon exhibited significant anisotropy since the array did not have rotational symmetry in space. The experimental observations were in good agreement with the theoretical simulations.
more »
« less
Acoustic attenuation in magnetic insulator films: effects of magnon polaron formation
Abstract A magnon and a phonon are the quanta of spin wave and lattice wave, respectively, and they can hybridize into a magnon polaron when their frequencies and wavenumbers match close enough the values at the exceptional point. Guided by an analytically calculated magnon polaron dispersion, dynamical phase-field simulations are performed to investigate the effects of magnon polaron formation on the attenuation of a bulk acoustic wave in a magnetic insulator film. It is shown that a stronger magnon–phonon coupling leads to a larger attenuation. The simulations also demonstrate the existence of a minimum magnon–phonon interaction time required for the magnon polaron formation, which is found to decrease with the magnetoelastic coupling coefficient but increase with the magnetic damping coefficient. These results deepen the understanding of the mechanisms of acoustic attenuation in magnetic crystals and provide insights into the design of new-concept spin interconnects that operate based on acoustically driven magnon propagation.
more »
« less
- Award ID(s):
- 2006028
- PAR ID:
- 10426052
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 56
- Issue:
- 5
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- 054004
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Modeling spin-wave (magnon) dynamics in novel materials is important to advance spintronics and spin-based quantum technologies. The interactions between magnons and lattice vibrations (phonons) limit the length scale for magnon transport. However, quantifying these interactions remains challenging. Here we show many-body calculations of magnon-phonon (mag-ph) coupling based on the ab initio Bethe-Salpeter equation. We derive expressions for mag-ph coupling matrices and compute them in 2D ferromagnets, focusing on hydrogenated graphene and monolayer CrI3. Our analysis shows that electron-phonon (e-ph) and mag-ph interactions differ significantly, where modes with weak e-ph coupling can exhibit strong mag-ph coupling (and vice versa), and reveals which phonon modes couple more strongly with magnons. In both materials studied here, the inelastic magnon relaxation time is found to decrease abruptly above the threshold for emission of strongly coupled phonons, thereby defining a low-energy window for efficient magnon transport. By averaging in this window, we compute the temperature-dependent magnon mean-free path, a key figure of merit for spintronics, entirely from first principles. The theory and computational tools shown in this work enable studies of magnon interactions, scattering, and dynamics in generic materials, advancing the design of magnetic systems and magnon- and spin-based devices.more » « less
-
Abstract We investigate the formation of magnetic Bose polaron, an impurity atom dressed by spin-wave excitations, in a one-dimensional spinor Bose gas. Within an effective potential model, the impurity is strongly confined by the host excitations which can even overcome the impurity-medium repulsion leading to a self-localized quasi-particle state. The phase diagram of the attractive and self-bound repulsive magnetic polaron, repulsive non-magnetic (Fröhlich-type) polaron and impurity-medium phase-separation regimes is explored with respect to the Rabi-coupling between the spin components, spin–spin interactions and impurity-medium coupling. The residue of such magnetic polarons decreases substantially in both strong attractive and repulsive branches with strong impurity-spin interactions, illustrating significant dressing of the impurity. The impurity can be used to probe and maneuver the spin polarization of the magnetic medium while suppressing ferromagnetic spin–spin correlations. It is shown that mean-field theory fails as the spinor gas approaches immiscibility since the generated spin-wave excitations are prominent. Our findings illustrate that impurities can be utilized to generate controllable spin–spin correlations and magnetic polaron states which can be realized with current cold atom setups.more » « less
-
Abstract The formation of a “spin polaron” stems from strong spin-charge-lattice interactions in magnetic oxides, which leads to a localization of carriers accompanied by local magnetic polarization and lattice distortion. For example, cupric oxide (CuO), which is a promising photocathode material and shares important similarities with highTcsuperconductors, conducts holes through spin polaron hopping with flipped spins at Cu atoms where a spin polaron has formed. The formation of these spin polarons results in an activated hopping conduction process where the carriers must not only overcome strong electron−phonon coupling but also strong magnetic coupling. Collectively, these effects cause low carrier conduction in CuO and hinder its applications. To overcome this fundamental limitation, we demonstrate from first-principles calculations how doping can improve hopping conduction through simultaneous improvement of hole concentration and hopping mobility in magnetic oxides such as CuO. Specifically, using Li doping as an example, we show that Li has a low ionization energy that improves hole concentration, and lowers the hopping barrier through both the electron−phonon and magnetic couplings' reduction that improves hopping mobility. Finally, this improved conduction predicted by theory is validated through the synthesis of Li-doped CuO electrodes which show enhanced photocurrent compared to pristine CuO electrodes. We conclude that doping with nonmagnetic shallow impurities is an effective strategy to improve hopping conductivities in magnetic oxides.more » « less
-
Chromium trihalides (CrX3, with X=I,Br,Cl) are layered ferromagnetic materials with rich physics and possible applications. Their structure consists of magnetic Cr atoms positioned between two layers of halide atoms. The choice of halide results in distinct magnetic properties, but their effect on spin-wave (magnon) excitations is not fully understood. Here we present first-principles calculations of magnon dispersions and wave functions for monolayer Cr trihalides using the finite-momentum Bethe-Salpeter equation (BSE) to describe collective spin-flip excitations. We study the dependence of magnon dispersions on the halide species and resolve the small topological gap at the Dirac point in the magnon spectrum by including spin-orbit coupling. Analysis of magnon wave functions reveals that magnons are made up of electronic transitions with a wider energy range than excitons in CrX3 monolayers, providing insight into magnon states in real and reciprocal space. We discuss Heisenberg exchange parameters extracted from the BSE and discuss the convergence of BSE magnon calculations. Our work advances the quantitative modeling of magnons in two-dimensional materials, providing the starting point for studying magnon interactions in a first-principles BSE framework.more » « less
An official website of the United States government

