skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Study of the intermediate mass ratio black hole binary merger up to 1000:1 with numerical relativity
Abstract We explicitly demonstrate that current numerical relativity techniques are able to accurately evolve black hole binaries with mass ratios of the order of 1000:1. This proof of principle is relevant for future third generation gravitational wave detectors and space mission LISA, as by purely numerical methods we would be able to accurately compute gravitational waves from the last stages of black hole mergers, as directly predicted by general relativity. We perform a sequence of simulations in the intermediate to small mass ratio regime, m 1 p / m 2 p = 1 / 7 , 1 / 16 , 1 / 32 , 1 / 64 , 1 / 128 , 1 / 256 , 1 / 512 , 1 / 1024 , with the small hole starting from rest at a proper distance D ≈ 13 M . We compare these headon full numerical evolutions with the corresponding semianalytic point particle perturbative results finding an impressive agreement for the total gravitational radiated energy and linear momentum as well as for the waveform spectra. We display numerical convergence of the results and identify the minimal numerical resolutions required to accurately solve for these very low amplitude gravitational waves. This work represents a first step towards the considerable challenge of applying numerical-relativity waveforms to interpreting gravitational-wave observations by LISA and next-generation ground-based gravitational-wave detectors.  more » « less
Award ID(s):
2207920
PAR ID:
10426101
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Classical and Quantum Gravity
Volume:
40
Issue:
9
ISSN:
0264-9381
Page Range / eLocation ID:
09LT01
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The merger of a binary black hole gives birth to a highly distorted final black hole. The gravitational radiation emitted as this black hole relaxes presents us with the unique opportunity to probe extreme gravity and its connection with the dynamics of the black hole horizon. Using numerical relativity simulations, we demonstrate a connection between a concrete observable feature in the gravitational waves and geometrical features on the dynamical apparent horizon of the final black hole. Specifically, we show how the line-of-sight passage of a “cusp”-like defect on the horizon of the final black hole correlates with “chirp”-like frequency peaks in the post-merger gravitational-waves. These post-merger chirps should be observed and analyzed as the sensitivity of LIGO and Virgo increase and as future generation detectors, such as LISA and the Einstein Telescope, become operational. 
    more » « less
  2. Abstract Since 2015 the gravitational-wave observations of LIGO and Virgo have transformed our understanding of compact-object binaries. In the years to come, ground-based gravitational-wave observatories such as LIGO, Virgo, and their successors will increase in sensitivity, discovering thousands of stellar-mass binaries. In the 2030s, the space-based LISA will provide gravitational-wave observations of massive black holes binaries. Between the $$\sim 10$$ ∼ 10 –10 3 Hz band of ground-based observatories and the $$\sim 10^{-4}$$ ∼ 1 0 − 4 –10 − 1 Hz band of LISA lies the uncharted decihertz gravitational-wave band. We propose a Decihertz Observatory to study this frequency range, and to complement observations made by other detectors. Decihertz observatories are well suited to observation of intermediate-mass ( $$\sim 10^{2}$$ ∼ 1 0 2 –10 4 M ⊙ ) black holes; they will be able to detect stellar-mass binaries days to years before they merge, providing early warning of nearby binary neutron star mergers and measurements of the eccentricity of binary black holes, and they will enable new tests of general relativity and the Standard Model of particle physics. Here we summarise how a Decihertz Observatory could provide unique insights into how black holes form and evolve across cosmic time, improve prospects for both multimessenger astronomy and multiband gravitational-wave astronomy, and enable new probes of gravity, particle physics and cosmology. 
    more » « less
  3. The assembly of massive black holes in the early universe remains a poorly constrained open question in astrophysics. The merger and accretion of light seeds (remnants of Population III stars with mass below ∼ 1000 M ) or heavy seeds (in the mass range 104−106 M ) could both explain the formation of massive black holes, but the abundance of seeds and their merging mechanism are highly uncertain. In the next decades, the gravitational-wave observatories coming online are expected to observe very highredshift mergers, shedding light on the seeding of the first black holes. In this Letter we explore the potential and limitations for LISA, Cosmic Explorer and Einstein Telescope to constrain the mixture ratio of light and heavy seeds as well as the probability that central black holes in merging galaxies merge as well. Since the third generation ground-based gravitational-wave detectors will only observe light seed mergers, we demonstrate two scenarios in which the inference of the seed mixture ratio and merging probability can be limited. The synergy of multi-band gravitational-wave observations and electromagnetic observations will likely be necessary in order to fully characterize the process of high-redshift black hole formation. 
    more » « less
  4. Abstract The detection of a sub-solar mass black hole could yield dramatic new insights into the nature of dark matter and early-Universe physics, as such objects lack a traditional astrophysical formation mechanism. Gravitational waves allow for the direct measurement of compact object masses during binary mergers, and we expect the gravitational-wave signal from a low-mass coalescence to remain within the LIGO frequency band for thousands of seconds. However, it is unclear whether one can confidently measure the properties of a sub-solar mass compact object and distinguish between a sub-solar mass black hole or other exotic objects. To this end, we perform Bayesian parameter estimation on simulated gravitational-wave signals from sub-solar mass black hole mergers to explore the measurability of their source properties. We find that the LIGO/Virgo detectors during the O4 observing run would be able to confidently identify sub-solar component masses at the threshold of detectability; these events would also be well-localized on the sky and may reveal some information on their binary spin geometry. Further, next-generation detectors such as Cosmic Explorer and the Einstein Telescope will allow for precision measurement of the properties of sub-solar mass mergers and tighter constraints on their compact-object nature. 
    more » « less
  5. A direct detection of black hole formation in neutron star mergers would provide invaluable information about matter in neutron star cores and finite temperature effects on the nuclear equation of state. We study black hole formation in neutron star mergers using a set of 190 numerical relativity simulations consisting of long-lived and black-hole-forming remnants. The postmerger gravitational-wave spectrum of a long-lived remnant has greatly reduced power at a frequency f greater than fpeak, for f ≳ 4 kHz, with fpeak in [2.5, 4] kHz. On the other hand, black-hole-forming remnants exhibit excess power in the same large f region and manifest exponential damping in the time domain characteristic of a quasinormal mode. We demonstrate that the gravitational-wave signal from a collapsed remnant is indeed a quasinormal ringing. We report on the opportunity for direct detections of black hole formation with next-generation gravitational-wave detectors such as Cosmic Explorer and Einstein Telescope and set forth the tantalizing prospect of such observations up to a distance of 100 Mpc for an optimally oriented and located source with an SNR of 4. 
    more » « less