Submarine cables have experienced problems during extreme geomagnetic disturbances because of geomagnetically induced voltages adding or subtracting from the power feed to the repeaters. This is still a concern for modern fiber‐optic cables because they contain a copper conductor to carry power to the repeaters. This paper provides a new examination of geomagnetic induction in submarine cables and makes calculations of the voltages experienced by the TAT‐8 trans‐Atlantic submarine cable during the March 1989 magnetic storm. It is shown that the cable itself experiences an induced electromotive force (emf) and that induction in the ocean also leads to changes of potential of the land at each end of the cable. The process for calculating the electric fields induced in the sea and in the cable from knowledge of the seawater depth and conductivity and subsea conductivity is explained. The cable route is divided into 9 sections and the seafloor electric field is calculated for each section. These are combined to give the total induced emf in the cable. In addition, induction in the seawater and leakage of induced currents through the underlying resistive layers are modeled using a transmission line model of the ocean and underlying layers to determine the change in Earth potentials at the cable ends. The induced emf in the cable and the end potentials are then combined to give the total voltage change experienced by the cable power feed equipment. This gives results very close to those recorded on the TAT‐8 cable in March 1989.
An analysis is made of geophysical records of the 24 March 1940, magnetic storm and related reports of interference on long‐line communication and power systems across the contiguous United States and, to a lesser extent, Canada. Most long‐line system interference occurred during local daytime, after the second of two storm sudden commencements and during the early part of the storm's main phase. The high degree of system interference experienced during this storm is inferred to have been due to unusually large‐amplitude and unusually rapid geomagnetic field variation, possibly driven by interacting interplanetary coronal‐mass ejections. Geomagnetic field variation, in turn, induced geoelectric fields in the electrically conducting solid Earth, establishing large potential differences (voltages) between grounding points at communication depots and transformer substations connected by long transmission lines. It is shown that March 1940 storm‐time communication‐ and power‐system interference was primarily experienced over regions of high electromagnetic surface impedance, mainly in the upper Midwest and eastern United States. Potential differences measured on several grounded long lines during the storm exceeded 1‐min resolution voltages that would have been induced by the March 1989 storm. In some places, voltages exceeded American electric‐power‐industry benchmarks. It is concluded that the March 1940 magnetic storm was unusually effective at inducing geoelectric fields. Although modern communication systems are now much less dependent on long electrically conducting transmission lines, modern electric‐power‐transmission systems are more dependent on such lines, and they, thus, might experience interference with the future occurrence of a storm as effective as that of March 1940.
more » « less- PAR ID:
- 10426338
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Space Weather
- Volume:
- 21
- Issue:
- 6
- ISSN:
- 1542-7390
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Geomagnetically induced currents (GICs) result from the interaction of the time variation of ground magnetic field during a geomagnetic disturbance with the Earth's deep electrical resistivity structure. In this study, we simulate induced GICs in a hypothetical representation of a low‐latitude power transmission network located mainly over the large Paleozoic Paraná basin (PB) in southern Brazil. Two intense geomagnetic storms in June and December 2015 are chosen and geoelectric fields are calculated by convolving a three‐dimensional (3‐D) Earth resistivity model with recorded geomagnetic variations. The
dB /dt proxy often used to characterize GIC activity fails during the June storm mainly due to the relationship of the instantaneous geoelectric field to previous magnetic field values. Precise resistances of network components are unknown, so assumptions are made for calculating GIC flows from the derived geoelectric field. The largest GICs are modeled in regions of low conductance in the 3‐D resistivity model, concentrated in an isolated substation at the northern edge of the network and in a cluster of substations in its central part where the east‐west (E‐W) oriented transmission lines coincide with the orientation of the instantaneous geoelectric field. The maximum magnitude of the modeled GIC was obtained during the main phase of the June storm, modeled at a northern substation, while the lowest magnitudes were found over prominent crustal anomalies along the PB axis and bordering the continental margin. The simulation results will be used to prospect the optimal substations for installation of GIC monitoring equipment. -
Abstract Intense geoelectric fields during geomagnetic storms drive geomagnetically induced currents in power grids and other infrastructure, yet there are limited direct measurements of these storm‐time geoelectric fields. Moreover, most previous studies examining storm‐time geoelectric fields focused on single events or small geographic regions, making it difficult to determine the typical source(s) of intense geoelectric fields. We perform the first comparative analysis of (a) the sources of intense geoelectric fields over multiple geomagnetic storms, (b) using 1‐s cadence geoelectric field measurements made at (c) magnetotelluric survey sites distributed widely across the United States. Temporally localized intense perturbations in measured geoelectric fields with prominences (a measure of the relative amplitude of geoelectric field enhancement above the surrounding signal) of at least 500 mV/km were detected during geomagnetic storms with Dst minima (
Dst min) of less than −100 nT from 2006 to 2019. Most of the intense geoelectric fields were observed in resistive regions with magnetic latitudes greater than 55° even though we have 167 sites located at lower latitudes during geomagnetic storms of −200nT ≤Dst min< −100nT . Our study indicates intense short‐lived (<1 min) and geoelectric field perturbations with periods on the order of 1–2 min are common. Most of these perturbations cannot be resolved with 1‐min data because they correspond to higher frequency or impulsive phenomena that vary on timescales shorter than that sampling interval. The sources of geomagnetic perturbations inducing these intense geoelectric fields include interplanetary shocks, interplanetary magnetic field turnings, substorms, and ultralow frequency waves. -
null (Ed.)The historical record indicates the possibility of intense coronal mass ejections (CMEs). Energized particles and magnetic fields ejected by coronal mass ejections (CMEs) towards the Earth may disrupt the Earth’s magnetosphere and generate a geomagnetic storm. During a geomagnetic storm, the induced geoelectric field can drive geomagnetically-induced currents (GICs) that flow through ground-based conductors. These GICs have the potential to damage high voltage power transmission systems and cause blackouts. As part of the NSF-funded Comprehensive Hazard Analysis for Resilience to Geomagnetic Extreme Disturbances (CHARGED) project, a solar-wind-to-lithosphere numerical model of the geoelectric field is being developed. The purpose of this new tool is to drive a new generation of GIC forecasting. As a part of that work, Maxwell’s equations, finite-difference time-domain (FDTD) models of the last stage of the Sun-to-Earth propagation path is being coupled to output generated by the Block Adaptive Tree Solarwind Roe-type Upwind Scheme (BATS-R-US) magnetohydrodynamics model and the Ridley Ionosphere Model (RIM) of ionospheric dynamics. Specifically, three-dimensional (3-D) BATS-R-US and RIM-predicted ionospheric currents occurring in the lower ionosphere during and around the time of the March 17, 2015 storm are modeled in 3-D FDTD models of North America. These models start at a depth of 150 km, and they account for ionospheric currents occurring up to an altitude of 115 km. The resolution of the FDTD models is 22 km (East-West) x 11 km (North-South) x 5 km (radially), and they account for 3-D lithosphere conductivities provided by the U.S. Geological Survey. The FDTD-calculated results are compared with surface magnetic fields measured in the region by SuperMAG and INTERMAGNET magnetometers. The FDTD results are also compared with virtual magnetometer data, which calculates the perturbation of the surface magnetic field using output from the BATS-R-US magnetohydrodynamics model. Comparison plots and an analysis of the results will be provided.more » « less
-
Abstract Intense geoelectric fields during geomagnetic storms generate geomagnetically induced currents in power grids and other infrastructure, necessitating an understanding of their causes, for example, through coordinated space and ground observations. This study investigates localized intense geoelectric (
E ) and geomagnetic (B ) field perturbations following an Interplanetary Magnetic Field (IMF) turning during a geomagnetic storm on 25 October 2011. Observations from EarthScope magnetotelluric sites in the upper Midwest United States revealed shorter period (1 min) ultra‐low‐frequency (ULF) waves superimposed on longer period (10 min) perturbations in bothE andB fields. These sites, located at 19 hr magnetic local time and magnetic latitude, recorded large amplitudeE andB perturbations. Ground‐based all‐sky imagers showed auroral brightening with sunward and poleward propagation, while upstream spacecraft linked the perturbations to an IMF turning and solar wind dynamic pressure impulse. The longer‐periodE andB field perturbations likely stem from localized ionospheric currents tied to substorm auroral activity post‐IMF turning. The combination of ionospheric currents, ULF waves, and the Earth's varying conductivity produces intense geoelectric fields of 2 V/km in the upper Midwest. A comparison using input data and software compatible with the NOAA/USGS geoelectric field nowcast model revealed its limitations in capturing such events due to the temporal and spatial resolution of the underlying data. Using 1‐s geomagnetic field data can improve geoelectric field models by capturing short‐period and large spatial scale waves, although localized magnetic perturbations remain underestimated due to insufficient ground magnetometer density.