Context.Stars with initial mass above roughly 8M⊙will evolve to form a core made of iron group elements, at which point no further exothermic nuclear reactions between charged nuclei may prevent the core collapse. Electron capture, neutrino losses, and the photo-disintegration of heavy nuclei trigger the collapse of these stars. Models at the brink of core collapse are produced using stellar evolution codes, and these pre-collapse models may be used in the study of the subsequent dynamical evolution (including their explosion as supernovae and the formation of compact remnants such as neutron stars or black holes). Aims.We upgraded the physical ingredients employed by the GENeva stellar Evolution Code, GENEC, so that it covers the regime of high-temperatures and high-densities required to produce the progenitors of core-collapse. Our ultimate goal is producing pre-supernova models with GENEC, not only right before collapse, but also during the late phases (silicon and oxygen burning). Methods.We have improved GENEC in three directions: equation of state, the nuclear reaction network, and the radiative and conductive opacities adapted for the computation of the advanced phases of evolution. We produce a small grid of pre-supernova models of stars with zero age main sequence masses of 15 M⊙, 20 M⊙, and 25 M⊙at solar and less than half solar metallicities. The results are compared with analogous models produced with the MESA code. Results.The global properties of our new models, particularly of their inner cores, are comparable to models computed with MESA and pre-existing progenitors in the literature. Between codes the exact shell structure varies, and impacts explosion predictions. Conclusions.Using GENEC with state-of-the-art physics, we have produced massive stellar progenitors prior to collapse. These progenitors are suitable for follow-up studies, including the dynamical collapse and supernova phases. Larger grids of supernova progenitors are now feasible, with the potential for further dynamical evolution.
more »
« less
Toward Realistic Models of Core Collapse Supernovae: A Brief Review
Abstract Motivated by their role as the direct or indirect source of many of the elements in the Universe, numerical modeling of core collapse supernovae began more than five decades ago. Progress toward ascertaining the explosion mechanism(s) has been realized through increasingly sophisticated models, as physics and dimensionality have been added, as physics and numerical modeling have improved, and as the leading computational resources available to modelers have become far more capable. The past five to ten years have witnessed the emergence of a consensus across the core collapse supernova modeling community that had not existed in the four decades prior. For the majority of progenitors – i.e., slowly rotating progenitors – the efficacy of the delayed shock mechanism, where the stalled supernova shock wave is revived by neutrino heating by neutrinos emanating from the proto-neutron star, has been demonstrated by all core collapse supernova modeling groups, across progenitor mass and metallicity. With this momentum, and now with a far deeper understanding of the dynamics of these events, the path forward is clear. While much progress has been made, much work remains to be done, but at this time we have every reason to be optimistic we are on track to answer one of the most important outstanding questions in astrophysics: How do massive stars end their lives?
more »
« less
- PAR ID:
- 10426506
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Proceedings of the International Astronomical Union
- Volume:
- 16
- Issue:
- S362
- ISSN:
- 1743-9213
- Page Range / eLocation ID:
- 215 to 227
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Most existing criteria derived from progenitor properties of core-collapse supernovae are not very accurate in predicting explosion outcomes. We present a novel look at identifying the explosion outcome of core-collapse supernovae using a machine-learning approach. Informed by a sample of 100 2D axisymmetric supernova simulations evolved with F ornax , we train and evaluate a random forest classifier as an explosion predictor. Furthermore, we examine physics-based feature sets including the compactness parameter, the Ertl condition, and a newly developed set that characterizes the silicon/oxygen interface. With over 1500 supernovae progenitors from 9−27 M ⊙ , we additionally train an autoencoder to extract physics-agnostic features directly from the progenitor density profiles. We find that the density profiles alone contain meaningful information regarding their explodability. Both the silicon/oxygen and autoencoder features predict the explosion outcome with ≈90% accuracy. In anticipation of much larger multidimensional simulation sets, we identify future directions in which machine-learning applications will be useful beyond the explosion outcome prediction.more » « less
-
ABSTRACT How massive stars end their lives depends on the core mass, core angular momentum, and hydrogen envelopes at death. However, these key physical facets of stellar evolution can be severely affected by binary interactions. In turn, the effectiveness of binary interactions itself varies greatly depending on the initial conditions of the binaries, making the situation much more complex. We investigate systematically how binary interactions influence core–collapse progenitors and their fates. Binary evolution simulations are performed to survey the parameter space of supernova progenitors in solar metallicity binary systems and to delineate major evolutionary paths. We first study fixed binary mass ratios ($$q=M_2/M_1$$ = 0.5, 0.7, and 0.9) to elucidate the impacts of initial mass and initial separation on the outcomes, treating separately Type Ibc supernova, Type II supernova, accretion-induced collapse (AIC), rapidly rotating supernova (Ibc-R), black hole formation, and long gamma ray burst (long GRB). We then conduct 12 binary population synthesis model calculations, varying the initial condition distributions and binary evolution parameters, to estimate various supernova fractions. We obtain a Milky Way supernova rate $$R_{\rm SN} = (1.78$$–$$2.47) \times 10^{-2} \, {\rm yr}^{-1}$$ which is consistent with observations. We find the rates of AIC, Ibc-R, and long GRB to be $$\sim 1/100$$ the rate of regular supernovae. Our estimated long GRB rates are higher than the observed long GRB rate and close to the low luminosity GRB rate, although care must be taken considering our models are computed with solar metallicity. Furthering binary modelling and improving the inputs one by one will enable more detailed studies of these and other transients associated with massive stars.more » « less
-
Abstract We present the results of a search for gravitational-wave transients associated with core-collapse supernova SN 2023ixf, which was observed in the galaxy Messier 101 via optical emission on 2023 May 19, during the LIGO–Virgo–KAGRA 15th Engineering Run. We define a five-day on-source window during which an accompanying gravitational-wave signal may have occurred. No gravitational waves have been identified in data when at least two gravitational-wave observatories were operating, which covered ∼14% of this five-day window. We report the search detection efficiency for various possible gravitational-wave emission models. Considering the distance to M101 (6.7 Mpc), we derive constraints on the gravitational-wave emission mechanism of core-collapse supernovae across a broad frequency spectrum, ranging from 50 Hz to 2 kHz, where we assume the gravitational-wave emission occurred when coincident data are available in the on-source window. Considering an ellipsoid model for a rotating proto-neutron star, our search is sensitive to gravitational-wave energy 1 × 10−4M⊙c2and luminosity 2.6 × 10−4M⊙c2s−1for a source emitting at 82 Hz. These constraints are around an order of magnitude more stringent than those obtained so far with gravitational-wave data. The constraint on the ellipticity of the proto-neutron star that is formed is as low as 1.08, at frequencies above 1200 Hz, surpassing past results.more » « less
-
ABSTRACT A core-collapse supernova is generated by the passage of a shock wave through the envelope of a massive star, where the shock wave is initially launched from the ‘bounce’ of the neutron star formed during the collapse of the stellar core. Instead of successfully exploding the star, however, numerical investigations of core-collapse supernovae find that this shock tends to ‘stall’ at small radii (≲10 neutron star radii), with stellar material accreting on to the central object through the standing shock. Here, we present time-steady, adiabatic solutions for the density, pressure, and velocity of the shocked fluid that accretes on to the compact object through the stalled shock, and we include the effects of general relativity in the Schwarzschild metric. Similar to previous works that were carried out in the Newtonian limit, we find that the gas ‘settles’ interior to the stalled shock; in the relativistic regime analysed here, the velocity asymptotically approaches zero near the Schwarzschild radius. These solutions can represent accretion on to a material surface if the radius of the compact object is outside of its event horizon, such as a neutron star; we also discuss the possibility that these solutions can approximately represent the accretion of gas on to a newly formed black hole following a core-collapse event. Our findings and solutions are particularly relevant in weak and failed supernovae, where the shock is pushed to small radii and relativistic effects are large.more » « less
An official website of the United States government

