This paper is the first of a pair that aims to classify a large number of the type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . In this work we classify the braided auto-equivalences of the categories of local modules for all known type I I quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . We find that the symmetries are all non-exceptional except for four cases (up to level-rank duality). These exceptional cases are the orbifolds C ( s l 2 , 16 ) Rep  ( Z 2 ) 0 \mathcal {C}(\mathfrak {sl}_{2}, 16)^0_{\operatorname {Rep}(\mathbb {Z}_{2})} , C ( s l 3 , 9 ) Rep  ( Z 3 ) 0 \mathcal {C}(\mathfrak {sl}_{3}, 9)^0_{\operatorname {Rep}(\mathbb {Z}_{3})} , C ( s l 4 , 8 ) Rep  ( Z 4 ) 0 \mathcal {C}(\mathfrak {sl}_{4}, 8)^0_{\operatorname {Rep}(\mathbb {Z}_{4})} , and C ( s l 5 , 5 ) Rep  ( Z 5 ) 0 \mathcal {C}(\mathfrak {sl}_{5}, 5)^0_{\operatorname {Rep}(\mathbb {Z}_{5})} . We develop several technical tools in this work. We give a skein theoretic description of the orbifold quantum subgroups of C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . Our methods here are general, and the techniques developed will generalise to give skein theory for any orbifold of a braided tensor category. We also give a formulation of orthogonal level-rank duality in the type D D - D D case, which is used to construct one of the exceptionals. We uncover an unexpected connection between quadratic categories and exceptional braided auto-equivalences of the orbifolds. We use this connection to construct two of the four exceptionals. In the sequel to this paper we will use the classified braided auto-equivalences to construct the corresponding type I I II quantum subgroups of the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . This will essentially finish the type I I II classification for s l n \mathfrak {sl}_n modulo type I I classification. When paired with Gannon’s type I I classification for r ≤ 6 r\leq 6 , our results will complete the type I I II classification for these same ranks. This paper includes an appendix by Terry Gannon, which provides useful results on the dimensions of objects in the categories C ( s l r + 1 , k ) \mathcal {C}(\mathfrak {sl}_{r+1}, k) . 
                        more » 
                        « less   
                    
                            
                            Marcinkiewicz Averages of Smooth Orthogonal Projections on Sphere
                        
                    
    
            Abstract We construct a single smooth orthogonal projection with desired localization whose average under a group action yields the decomposition of the identity operator. For any full rank lattice $$\Gamma \subset \mathbb {R}^d$$ Γ ⊂ R d , a smooth projection is localized in a neighborhood of an arbitrary precompact fundamental domain $$\mathbb {R}^d/\Gamma $$ R d / Γ . We also show the existence of a highly localized smooth orthogonal projection, whose Marcinkiewicz average under the action of SO ( d ), is a multiple of the identity on $$L^2(\mathbb {S}^{d-1})$$ L 2 ( S d - 1 ) . As an application we construct highly localized continuous Parseval frames on the sphere. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1956395
- PAR ID:
- 10426568
- Date Published:
- Journal Name:
- Journal of Fourier Analysis and Applications
- Volume:
- 28
- Issue:
- 5
- ISSN:
- 1069-5869
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)We construct a stable homotopy refinement of quantum annular homology, a link homology theory introduced by Beliakova, Putyra and Wehrli. For each $$r\geq ~2$$ we associate to an annular link $$L$$ a naive $$\mathbb {Z}/r\mathbb {Z}$$ -equivariant spectrum whose cohomology is isomorphic to the quantum annular homology of $$L$$ as modules over $$\mathbb {Z}[\mathbb {Z}/r\mathbb {Z}]$$ . The construction relies on an equivariant version of the Burnside category approach of Lawson, Lipshitz and Sarkar. The quotient under the cyclic group action is shown to recover the stable homotopy refinement of annular Khovanov homology. We study spectrum level lifts of structural properties of quantum annular homology.more » « less
- 
            Abstract Given a sequence $$\{Z_d\}_{d\in \mathbb{N}}$$ of smooth and compact hypersurfaces in $${\mathbb{R}}^{n-1}$$, we prove that (up to extracting subsequences) there exists a regular definable hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$ such that each manifold $$Z_d$$ is diffeomorphic to a component of the zero set on $$\Gamma$$ of some polynomial of degree $$d$$. (This is in sharp contrast with the case when $$\Gamma$$ is semialgebraic, where for example the homological complexity of the zero set of a polynomial $$p$$ on $$\Gamma$$ is bounded by a polynomial in $$\deg (p)$$.) More precisely, given the above sequence of hypersurfaces, we construct a regular, compact, semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^{n}$$ containing a subset $$D$$ homeomorphic to a disk, and a family of polynomials $$\{p_m\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that $$(D, Z(p_m)\cap D)\sim ({\mathbb{R}}^{n-1}, Z_{d_m}),$$ i.e. the zero set of $$p_m$$ in $$D$$ is isotopic to $$Z_{d_m}$$ in $${\mathbb{R}}^{n-1}$$. This says that, up to extracting subsequences, the intersection of $$\Gamma$$ with a hypersurface of degree $$d$$ can be as complicated as we want. We call these ‘pathological examples’. In particular, we show that for every $$0 \leq k \leq n-2$$ and every sequence of natural numbers $$a=\{a_d\}_{d\in \mathbb{N}}$$ there is a regular, compact semianalytic hypersurface $$\Gamma \subset {\mathbb{R}}\textrm{P}^n$$, a subsequence $$\{a_{d_m}\}_{m\in \mathbb{N}}$$ and homogeneous polynomials $$\{p_{m}\}_{m\in \mathbb{N}}$$ of degree $$\deg (p_m)=d_m$$ such that (0.1)$$\begin{equation}b_k(\Gamma\cap Z(p_m))\geq a_{d_m}.\end{equation}$$ (Here $$b_k$$ denotes the $$k$$th Betti number.) This generalizes a result of Gwoździewicz et al. [13]. On the other hand, for a given definable $$\Gamma$$ we show that the Fubini–Study measure, in the Gaussian probability space of polynomials of degree $$d$$, of the set $$\Sigma _{d_m,a, \Gamma }$$ of polynomials verifying (0.1) is positive, but there exists a constant $$c_\Gamma$$ such that $$\begin{equation*}0<{\mathbb{P}}(\Sigma_{d_m, a, \Gamma})\leq \frac{c_{\Gamma} d_m^{\frac{n-1}{2}}}{a_{d_m}}.\end{equation*}$$ This shows that the set of ‘pathological examples’ has ‘small’ measure (the faster $$a$$ grows, the smaller the measure and pathologies are therefore rare). In fact we show that given $$\Gamma$$, for most polynomials a Bézout-type bound holds for the intersection $$\Gamma \cap Z(p)$$: for every $$0\leq k\leq n-2$$ and $t>0$: $$\begin{equation*}{\mathbb{P}}\left(\{b_k(\Gamma\cap Z(p))\geq t d^{n-1} \}\right)\leq \frac{c_\Gamma}{td^{\frac{n-1}{2}}}.\end{equation*}$$more » « less
- 
            null (Ed.)Abstract We consider the 𝑑-dimensional Boussinesq system defined on a sufficiently smooth bounded domain and subject to a pair { v , u } \{v,\boldsymbol{u}\} of controls localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} .Here, 𝑣 is a scalar Dirichlet boundary control for the thermal equation, acting on an arbitrarily small connected portion Γ ~ \widetilde{\Gamma} of the boundary Γ = ∂  Ω \Gamma=\partial\Omega .Instead, 𝒖 is a 𝑑-dimensional internal control for the fluid equation acting on an arbitrarily small collar 𝜔 supported by Γ ~ \widetilde{\Gamma} .The initial conditions for both fluid and heat equations are taken of low regularity.We then seek to uniformly stabilize such Boussinesq system in the vicinity of an unstable equilibrium pair, in the critical setting of correspondingly low regularity spaces, by means of an explicitly constructed, finite-dimensional feedback control pair { v , u } \{v,\boldsymbol{u}\} localized on { Γ ~ , ω } \{\widetilde{\Gamma},\omega\} .In addition, they will be minimal in number and of reduced dimension; more precisely, 𝒖 will be of dimension ( d - 1 ) (d-1) , to include necessarily its 𝑑-th component, and 𝑣 will be of dimension 1.The resulting space of well-posedness and stabilization is a suitable, tight Besov space for the fluid velocity component (close to L 3  ( Ω ) \boldsymbol{L}^{3}(\Omega) for d = 3 d=3 ) and a corresponding Besov space for the thermal component, q > d q>d .Unique continuation inverse theorems for suitably over-determined adjoint static problems play a critical role in the constructive solution.Their proof rests on Carleman-type estimates, a topic pioneered by M. V. Klibanov since the early 80s.more » « less
- 
            Abstract We investigate the rigidity of global minimizers u ≥ 0 u\ge 0 of the Alt-Phillips functional involving negative power potentials ∫ Ω ( ∣ ∇ u ∣ 2 + u − γ χ { u > 0 } ) d x , γ ∈ ( 0 , 2 ) , \mathop{\int }\limits_{\Omega }(| \nabla u{| }^{2}+{u}^{-\gamma }{\chi }_{\left\{u\gt 0\right\}}){\rm{d}}x,\hspace{1.0em}\gamma \in \left(0,2), when the exponent γ \gamma is close to the extremes of the admissible values. In particular, we show that global minimizers in R n {{\mathbb{R}}}^{n} are one-dimensional if γ \gamma is close to 2 and n ≤ 7 n\le 7 , or if γ \gamma is close to 0 and n ≤ 4 n\le 4 .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    