skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Title: Three‐dimensional species distribution modelling reveals the realized spatial niche for coral recruitment on contemporary Caribbean reefs
Abstract

The three‐dimensional structure of habitats is a critical component of species' niches driving coexistence in species‐rich ecosystems. However, its influence on structuring and partitioning recruitment niches has not been widely addressed. We developed a new method to combine species distribution modelling and structure from motion, and characterized three‐dimensional recruitment niches of two ecosystem engineers on Caribbean coral reefs, scleractinian corals and gorgonians. Fine‐scale roughness was the most important predictor of suitable habitat for both taxa, and their niches largely overlapped, primarily due to scleractinians' broader niche breadth. Crevices and holes at mm scales on calcareous rock with low coral cover were more suitable for octocorals than for scleractinian recruits, suggesting that the decline in scleractinian corals is facilitating the recruitment of octocorals on contemporary Caribbean reefs. However, the relative abundances of the taxa were independent of the amount of suitable habitat on the reef, emphasizing that niche processes alone do not predict recruitment rates.

 
more » « less
Award ID(s):
1756381
NSF-PAR ID:
10426670
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
ISSN:
1461-023X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Unlike reef-building, scleractinian corals, Caribbean soft corals (octocorals) have not suffered marked declines in abundance associated with anthropogenic ocean warming. Both octocorals and reef-building scleractinians depend on a nutritional symbiosis with single-celled algae living within their tissues. In both groups, increased ocean temperatures can induce symbiont loss (bleaching) and coral death. Multiple heat waves from 2014 to 2016 resulted in widespread damage to reef ecosystems and provided an opportunity to examine the bleaching response of three Caribbean octocoral species. Symbiont densities declined during the heat waves but recovered quickly, and colony mortality was low. The dominant symbiont genotypes within a host generally did not change, and all colonies hosted symbiont species in the genusBreviolum.Their association with thermally tolerant symbionts likely contributes to the octocoral holobiont’s resistance to mortality and the resilience of their symbiont populations. The resistance and resilience of Caribbean octocorals offer clues for the future of coral reefs.

     
    more » « less
  2. Abstract

    Benthic organisms are the architectural framework supporting coral reef ecosystems, but their community composition has recently shifted on many reefs. Little is known about the metabolites released from these benthic organisms and how compositional shifts may influence other reef life, including prolific microorganisms. To investigate the metabolite composition of benthic exudates and their ecological significance for reef microbial communities, we harvested exudates from six species of Caribbean benthic organisms including stony corals, octocorals, and an invasive encrusting alga, and subjected these exudates to untargeted and targeted metabolomics approaches using liquid chromatography-mass spectrometry. Incubations with reef seawater microorganisms were conducted to monitor changes in microbial abundances and community composition using 16 S rRNA gene sequencing in relation to exudate source and three specific metabolites. Exudates were enriched in amino acids, nucleosides, vitamins, and indole-based metabolites, showing that benthic organisms contribute labile organic matter to reefs. Furthermore, exudate compositions were species-specific, and riboflavin and pantothenic acid emerged as significant coral-produced metabolites, while caffeine emerged as a significant invasive algal-produced metabolite. Microbial abundances and individual microbial taxa responded differently to exudates from stony corals and octocorals, demonstrating that exudate mixtures released from different coral species select for specific bacteria. In contrast, microbial communities did not respond to individual additions of riboflavin, pantothenic acid, or caffeine. This work indicates that recent shifts in benthic organisms alter exudate composition and likely impact microbial communities on coral reefs.

     
    more » « less
  3. Coral reefs throughout the tropics have experienced large declines in abundance of scleractinian corals over the last few decades, and some reefs are becoming functionally dominated by animal taxa other than scleractinians. This phenomenon is striking on many shallow reefs in the tropical western Atlantic, where arborescent octocorals now are numerically and functionally dominant. Octocorals are one of several taxa that have been overlooked for decades in analyses of coral reef community dynamics, and our understanding of why octocorals are favored (whereas scleractinians are not) on some modern reefs, and how they will affect the function of future reef communities, is not commensurate with the task of scientifically responding to the coral reef crisis. We summarize the biological and ecological features predisposing octocorals for success under contemporary conditions, and focus on those features that could have generated resistance and resilience of octocoral populations to environmental change on modern reefs. There is a rich set of opportunities for rapid advancement in understanding the factors driving the success of octocorals on modern reefs, but we underscore three lines of inquiry: (1) the functional implications of strongly mixotrophic, polytrophic, and plastic nutrition, (2) the capacity to recruit at high densities and maintain rapid initial rates of vertical growth, and (3) the emergent properties associated with dense animal forests at high colony densities. 
    more » « less
  4. Abstract

    Patterns of population biology and community structure can be studied by looking closely at the ontogeny and reproductive biology of reef‐building organisms. This knowledge is particularly important for Caribbean octocorals, which seem to be more resilient to long‐term environmental change than scleractinian corals and provide some of the same ecological services. We monitored the development of the black sea rod,Plexaura homomalla, a common, widely distributed octocoral on shallow Caribbean reefs, from eggs to three‐polyp colonies over the course of 10 weeks. Gametes were collectedex situon St. John, U.S. Virgin Islands, during spawning events that occurred 3–6 days after the July full moon. Cleavage started 3.0 hr after fertilization and was holoblastic, equal, and radial. Embryos were positively buoyant until becoming planulae at 3 days after fertilization. Planulae were competent to settle 4 days after fertilization. Symbiodiniaceae began infecting polyps ~8 days after fertilization. Overall, development was typical for Caribbean octocorals, except for an increase in the number of embryos between 3.5 and 6.0 hr after fertilization.

     
    more » « less
  5. Abstract

    Declines in abundance of scleractinian corals on shallow Caribbean reefs have left many reefs dominated by forests of arborescent octocorals. The ecological mechanisms favoring their persistence require exploration. We quantified octocoral communities from 2014 to 2019 at two sites in St. John, US Virgin Islands, and evaluated their dynamics to assess whether portfolio effects might contribute to their resilience. Octocorals were identified to species, or species complexes, and their abundances and heights were measured, with height2serving as a biomass proxy. Annual variation in abundance was asynchronous among species, except when they responded in similar ways to hurricanes in September 2017. Multivariate changes in octocoral communities, viewed in 2-dimensional ordinations, were similar between sites, but analyses based on density differed from those based on the biomass proxy. On the density scale, variation in the community composed of all octocoral species was indistinguishable from that quantified with subsets of 6–10 of the octocoral species at one of the two sites, identifying structural redundancy in the response of the community. Conservation of the relative colony size-frequency structure, combined with temporal changes in the species represented by the tallest colonies, suggests that portfolio effects and functional redundancy stabilize the vertical structure and canopy in these tropical octocoral forests.

     
    more » « less