skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hurricane Simulation and Nonstationary Extremal Analysis for a Changing Climate
Abstract Particularly important to hurricane risk assessment for coastal regions is finding accurate approximations of return probabilities of maximum wind speeds. Since extremes in maximum wind speed have a direct relationship with minima in the central pressure, accurate wind speed return estimates rely heavily on proper modeling of the central pressure minima. Using the HURDAT2 database, we show that the central pressure minima of hurricane events can be appropriately modeled by a nonstationary extreme value distribution. We also provide and validate a Poisson distribution with a nonstationary rate parameter to model returns of hurricane events. Using our nonstationary models and numerical simulation techniques from established literature, we perform a simulation study to model returns of maximum wind speeds of hurricane events along the North Atlantic coast. We show that our revised model agrees with current data and results in an expectation of higher maximum wind speeds for all regions along the coast, with the highest maximum wind speeds occurring along the northeast seaboard.  more » « less
Award ID(s):
2009923
PAR ID:
10427599
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Applied Meteorology and Climatology
Volume:
61
Issue:
11
ISSN:
1558-8424
Page Range / eLocation ID:
1635 to 1648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this study, it is demonstrated that hurricane wind intensity, forward speed, pressure, and track play an important role on the generation and propagation of coastal storm surges. Hurricane Irma, which heavily impacted the entire Florida peninsula in 2017, is used to study the storm surge sensitivity to varying storm characteristics. Results show that the west coast experiences a negative surge due to offshore wind of the approaching storm, but the positive surge returns after the hurricane eye passes over a location and wind became onshore. In the west coast peak, surges are intensified by an increase in onshore wind intensity and forward speed. In the Florida Keys, peak surges are intensified by an increase in wind intensity, a decrease in forward speed and a decrease in pressure. In southeast and east Florida, peak surges are intensified by decrease in pressure, although overall surges are less significant as the water can slide along the coastline. In the recessed coastline of Georgia-Carolinas, maximum surge is elevated by an increase in onshore wind intensity. Shifting the track westward increases peak surges on the west coast, while shifting the track eastward increases peak surge on the east coast. The results demonstrate a new understanding about the sensitivity of surge to varying parametric conditions and the importance of considering changes in the coastline orientation in storm surge predictions. 
    more » « less
  2. Abstract Along‐shelf wind stresses drive substantial along‐coast variations in sea level that result in significant along‐coast pressure gradients in the Middle Atlantic Bight (MAB) at time scales from days to years. Forty years of sea‐level data and reanalysis wind stresses are examined to determine the characteristics and dynamics of pressure gradients along the New England and Central MAB coasts. Along‐coast dynamic sea level (pressure) gradients often exceed 5 cm/100 km at daily time scales, 2 cm/100 km at monthly time scales and 0.2 cm/100 km at yearly time scales. Along‐shelf wind stresses account for more than 50% of the along‐coast pressure gradient variance at daily and monthly time scales and more than 25% at yearly time scales. Pressure gradients along the New England coast are primarily driven by local wind stresses along the New England shelf, while pressure gradients along the Central MAB shelf are driven by both local wind stresses along the Central MAB shelf and remote wind stresses along the New England shelf. A steady depth‐average model (Csanady, 1978,https://doi.org/10.1175/1520‐0485(1978)008<0047:tatw>2.0.co;2) accurately reproduces the wind‐driven along‐coast pressure gradients in both regions. The along‐coast pressure gradients typically oppose the local wind stress and, in the along‐shelf momentum balance, are 50%–80% of the along‐shelf wind stress over the inner shelf (water depth 15 m). 
    more » « less
  3. Abstract Influences of the ocean mixed layer (OML) dynamics on intensity, pathway, and landfall of October 2012 Hurricane Sandy were examined through an experiment using the Weather Research and Forecasting (WRF) model. The WRF model was run for two cases with or without coupling to the OML. The OML in the WRF was calculated by an oceanic mixed layer submodel. The initial conditions of the depth and mean water temperature of the OML were specified using Global‐FVCOM and Global‐HYCOM fields. The comparison results between these two cases clearly show that including the OML dynamics enhanced the contribution of vertical mixing to the air‐sea heat flux. When the hurricane moved toward the coast, the local OML rapidly deepened with an increase of storm wind. Intense vertical mixing brought cold water in the deep ocean toward the surface to produce a cold wake underneath the storm, with the lowest sea temperature at the maximum wind zone. This process led to a significant latent heat loss from the ocean within the storm and hence rapid drops of the air temperature and vapor mixing ratio above the sea surface. As a result, the storm was intensified as the central sea level pressure dropped. Improving air pressure simulation with OML tended to reduce the storm size and strengthened the storm intensity and hence provided a better simulation of hurricane pathway and landfall. 
    more » « less
  4. Abstract Minimum central pressure (Pmin) is an integrated measure of the tropical cyclone wind field and is known to be a useful indicator of storm damage potential. A simple model that predictsPminfrom routinely estimated quantities, including storm size, would be of great value. Here, we present a simple linear empirical model for predictingPminfrom maximum wind speed, a radius of 34-kt (1 kt ≈ 0.51 m s−1) winds (R34kt), storm center latitude, and the environmental pressure. An empirical model for the pressure deficit is first developed that takes as predictors specific combinations of these quantities that are derived directly from theory based on gradient wind balance and a modified Rankine-type wind profile known to capture storm structure inside ofR34kt. Model coefficients are estimated using data from the southwestern North Atlantic and eastern North Pacific from 2004 to 2022 using aircraft-based estimates ofPmin, extended best track data, and estimates of environmental pressure from Global Forecast System (GFS) analyses. The model has a near-zero conditional bias even for lowPmin, explaining 94.2% of the variance. Performance is superior to a variety of other model formulations, including a standard wind–pressure model that does not account for storm size or latitude (89.2% variance explained). Model performance is also strong when applied to high-latitude data and data near coastlines. Finally, the model is shown to perform comparably well in an operation-like setting based solely on routinely estimated variables, including the pressure of the outermost closed isobar. Case study applications to five impactful historical storms are discussed. Overall, the model offers a simple, fast, physically based prediction forPminfor practical use in operations and research. Significance StatementSea level pressure is lowest at the center of a hurricane and is routinely estimated in operational forecasting along with the maximum wind speed. While the latter is currently used to define hurricane intensity, the minimum pressure is also a viable measure of storm intensity that is known to better represent damage risk. A simple empirical model that predicts the minimum pressure from maximum wind speed and size, and based on the physics of the hurricane wind field, does not currently exist. This work develops such a model by using wind field physics to determine the important parameters and then uses a simple statistical model to make the final prediction. This model is quick and easy to use in weather forecasting and risk assessment applications. 
    more » « less
  5. null (Ed.)
    Hurricane storm surges are influenced by several factors, including wind intensity, surface pressure, forward speed, size, angle of approach, ocean bottom depth and slope, shape and geographical features of the coastline. The relative influence of each factor may be amplified or abated by other factors that are acting at the time of the hurricane’s approach to the land. To understand the individual and combined influence of wind intensity, surface pressure and forward speed, a numerical experiment is conducted using Advanced CIRCulation + Simulating Waves Nearshore (ADCIRC + SWAN) by performing hindcasts of Hurricane Rita storm surges. The wind field generated by Ocean Weather Inc. (OWI) is used as the base meteorological forcing in ADCIRC + SWAN. All parameters are varied by certain percentages from those in the OWI wind field. Simulation results are analyzed for maximum wind intensity, wind vector pattern, minimum surface pressure, forward speed, maximum water elevation, station water elevation time series, and high water marks. The results for different cases are compared against each other, as well as with observed data. Changes in the wind intensity have the greatest impact, followed by the forward speed and surface pressure. The combined effects of the wind intensity and forward speed are noticeably different than their individual effects. 
    more » « less