This work proposes a unified hp-adaptivity framework for hybridized discontinuous Galerkin (HDG) method for a large class of partial differential equations (PDEs) of Friedrichs’ type. In particular, we present unified hp-HDG formulations for abstract one-field and two-field structures and prove their well-posedness. In order to handle non-conforming interfaces we simply take advantage of HDG built-in mortar structures. With split-type mortars and the approximation space of trace, a numerical flux can be derived via Godunov approach and be naturally employed without any additional treatment. As a consequence, the proposed formulations are parameter-free. We perform several numerical experiments for time-independent and linear PDEs including elliptic, hyperbolic, and mixed-type to verify the proposed unified hp-formulations and demonstrate the effectiveness of hp-adaptation. Two adaptivity criteria are considered: one is based on a simple and fast error indicator, while the other is rigorous but more expensive using an adjoint-based error estimate. The numerical results show that these two approaches are comparable in terms of convergence rate even for problems with strong gradients, discontinuities, and singularities.
more »
« less
Afternote to “Coupling at a Distance”: Convergence Analysis and A Priori Error Estimates
Abstract In their article “Coupling at a distance HDG and BEM” , Cockburn, Sayas and Solano proposed an iterative coupling of the hybridizable discontinuous Galerkin method (HDG) and the boundary element method (BEM) to solve an exterior Dirichlet problem. The novelty of the numerical scheme consisted of using a computational domain for the HDG discretization whose boundary did not coincide with the coupling interface. In their article, the authors provided extensive numerical evidence for convergence, but the proof of convergence and the error analysis remained elusive at that time. In this article we fill the gap by proving the convergence of a relaxation of the algorithm and providing a priori error estimates for the numerical solution.
more »
« less
- Award ID(s):
- 2137305
- PAR ID:
- 10427970
- Date Published:
- Journal Name:
- Computational Methods in Applied Mathematics
- Volume:
- 22
- Issue:
- 4
- ISSN:
- 1609-4840
- Page Range / eLocation ID:
- 945 to 970
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider an unconstrained tangential Dirichlet boundary control problem for the Stokes equations with an $ L^2 $ penalty on the boundary control. The contribution of this paper is twofold. First, we obtain well-posedness and regularity results for the tangential Dirichlet control problem on a convex polygonal domain. The analysis contains new features not found in similar Dirichlet control problems for the Poisson equation; an interesting result is that the optimal control has higher local regularity on the individual edges of the domain compared to the global regularity on the entire boundary. Second, we propose and analyze a hybridizable discontinuous Galerkin (HDG) method to approximate the solution. For convex polygonal domains, our theoretical convergence rate for the control is optimal with respect to the global regularity on the entire boundary. We present numerical experiments to demonstrate the performance of the HDG method.more » « less
-
We present a divergence-free and $$\Hsp\LRp{div}$$-conforming hybridized discontinuous Galerkin (HDG) method and a computationally efficient variant called embedded-HDG (E-HDG) for solving stationary incompressible viso-resistive magnetohydrodynamic (MHD) equations. The proposed E-HDG approach uses continuous facet unknowns for the vector-valued solutions (velocity and magnetic fields) while it uses discontinuous facet unknowns for the scalar variable (pressure and magnetic pressure). This choice of function spaces makes E-HDG computationally far more advantageous, due to the much smaller number of degrees of freedom, compared to the HDG counterpart. The benefit is even more significant for three-dimensional/high-order/fine mesh scenarios. On simplicial meshes, the proposed methods with a specific choice of approximation spaces are well-posed for linear(ized) MHD equations. For nonlinear MHD problems, we present a simple approach exploiting the proposed linear discretizations by using a Picard iteration. The beauty of this approach is that the divergence-free and $$\Hsp\LRp{div}$$-conforming properties of the velocity and magnetic fields are automatically carried over for nonlinear MHD equations. We study the accuracy and convergence of our E-HDG method for both linear and nonlinear MHD cases through various numerical experiments, including two- and three-dimensional problems with smooth and singular solutions. The numerical examples show that the proposed methods are pressure robust, and the divergence of the resulting velocity and magnetic fields is machine zero for both smooth and singular problems.more » « less
-
We introduce and analyze a coupled hybridizable discontinuous Galerkin/discontinuous Galerkin (HDG/DG) method for porous media in which we allow fully and partly immersed faults, and faults that separate the domain into two disjoint subdomains. We prove well-posedness and present an a priori error analysis of the discretization. Numerical examples verify our analysis.more » « less
-
We present the lowest-order hybridizable discontinuous Galerkin schemes with numerical integration (quadrature), denoted as HDG-P0 for the reaction-diffusion equation and the generalized Stokes equations on conforming simplicial meshes in two- and three-dimensions. Here by lowest order, we mean that the (hybrid) finite element space for the global HDG facet degrees of freedom (DOFs) is the space of piecewise constants on the mesh skeleton. A discontinuous piecewise linear space is used for the approximation of the local primal unknowns. We give the optimal a priori error analysis of the proposed HDG-P0 schemes, which hasn’t appeared in the literature yet for HDG discretizations as far as numerical integration is concerned. Moreover, we propose optimal geometric multigrid preconditioners for the statically condensed HDG-P0 linear systems on conforming simplicial meshes. In both cases, we first establish the equivalence of the statically condensed HDG system with a (slightly modified) nonconforming Crouzeix–Raviart (CR) discretization, where the global (piecewise-constant) HDG finite element space on the mesh skeleton has a natural one-to-one correspondence to the nonconforming CR (piecewise-linear) finite element space that live on the whole mesh. This equivalence then allows us to use the well-established nonconforming geometry multigrid theory to precondition the condensed HDG system. Numerical results in two- and three-dimensions are presented to verify our theoretical findings.more » « less
An official website of the United States government

