skip to main content


This content will become publicly available on May 3, 2024

Title: The role of subduction in the formation of Pangean oceanic large igneous provinces
Abstract Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure, and breakup of the supercontinent Pangea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return-flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e., continental LIPs). However, a number of LIPs formed exterior to Pangea (e.g., Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection, and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep-mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP, and potentially the Shatsky Rise, by linking the origin of these LIPs to the return-flow that generated deep mantle exterior plumes.  more » « less
Award ID(s):
1925677 2054605
NSF-PAR ID:
10428142
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Geological Society, London, Special Publications
Volume:
542
Issue:
1
ISSN:
0305-8719
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Oceanic hotspots with extreme enriched mantle radiogenic isotopic signatures—including low143Nd/144Nd indicative of subducted continental crust—are linked to plume conduits sampling the southern hemispheric mantle. However, the mechanisms responsible for concentrating subducted continental crust in the austral mantle are unknown. We show that subduction of sediments and subduction eroded material, and lower continental crust delamination, cannot generate this spatially coherent austral geochemical domain. However, continental collisions—associated with the assembly of Gondwana‐Pangea—were positioned predominantly in the southern hemisphere during the late Neoproterozoic appearance of widespread continental ultra‐high‐pressure metamorphic terranes, which marked the onset of deep subduction of upper continental crust. We propose that deep subduction of upper continental crust at ancient rifted‐passive margins during ca. 650‐300 Ma austral supercontinent assembly resulted in enhanced upper continental crust delivery into the southern hemisphere mantle. Similarly enriched mantle domains are absent in the boreal mantle plume source, for two reasons. First, continental crust subducted after 300 Ma—when the continents drifted into the northern hemisphere—has had insufficient time to return to the surface in plumes sampling the northern hemisphere mantle. Second, before the first known appearance of continental ultra‐high‐pressure rocks at 650 Ma, deep subduction of upper continental crust was uncommon, limiting its subduction into the northern (and southern) hemisphere mantle earlier in Earth history. Our model implies a recent formation of the austral enriched mantle domain, explains the geochemical dichotomy between austral and boreal plume sources, and may explain why there are twice as many austral hotspots as boreal hotspots.

     
    more » « less
  2. Abstract

    Deep‐rooted mantle plumes are thought to originate from the margins of the Large Low Shear Velocity Provinces (LLSVPs) at the base of the mantle. Visible in seismic tomography, the LLSVPs are usually interpreted to be intrinsically dense thermochemical piles in numerical models. Although piles deflect lateral mantle flow upward at their edges, the mechanism for localized plume formation is still not well understood. In this study, we develop numerical models that show plumes rising from the margin of a dense thermochemical pile, temporarily increasing its local thickness until material at the pile top cools and the pile starts to collapse back toward the core‐mantle boundary (CMB). This causes dense pile material to spread laterally along the CMB, locally thickening the lower thermal boundary layer on the CMB next to the pile, and initiating a new plume. The resulting plume cycle is reflected in both the thickness and lateral motion of the local pile margin within a few hundred km of the pile edge, while the overall thickness of the pile is not affected. The period of plume generation is mainly controlled by the rate at which slab material is transported to the CMB, and thus depends on the plate velocity and the sinking rate of slabs in the lower mantle. A pile collapse, with plumes forming along the edges of the pile's radially extending corner, may, for example, explain the observed clustering of Large Igneous Provinces (LIPs) in the southeastern corner of the African LLSVP around 95–155 Ma.

     
    more » « less
  3. Abstract

    The mainly deep-submarine Ontong Java Plateau (OJP) is the result of the largest outpouring of lava in the geologic record. Volcanic events of this magnitude can have dramatic environmental impacts due to volatile emissions. We report new S measurements in naturally glassy, olivine-hosted melt inclusions and pillow basalt glasses from the OJP. We combined these data with previous S measurements in OJP glasses to quantify S degassing in a suite of OJP glasses. Comparison with an S degassing model suggests OJP lavas that erupted at depths ~>1500 m did not degas S; OJP lavas that erupted at depths ~<1500 m degassed up to ~40% initial S, but these lavas likely made up a small fraction of OJP lavas. This result suggests that despite its large volume compared to continental large igneous provinces (LIPs), OJP lavas emitted less S, potentially contributing to its muted environmental impact. The OJP may provide a framework for the temporal evolution of S degassing at oceanic LIPs, with early eruptions at great water depths releasing limited to no S, and later eruptions at shallow water depths releasing larger, but still limited amounts of S. This framework may also have implications for continental LIP magmas, which may release significant amounts of CO2 but limited amounts of S during intrusive activity, with magmatic S emissions only becoming important during extrusive phases.

     
    more » « less
  4. This article provides a review on the studies of large temporal and spatial scale dynamics of the Earth’s mantle. The review focuses on relevant observations and their geodynamic interpretations and implications. These observations include present-day Earth’s plate tectonics, long- and intermediate-wavelength geoid and gravity anomalies, and mantle seismic structures, as well as important tectonism and magmatism that have happened in the last one billion years, associated with the formation and breakup of supercontinents Pangea and Rodinia. Much of the discussion is centered on how these observations have motivated geodynamic studies and modeling that seek to understand and interpret the observations. This review covers four topics. The first is on the primary characteristics of mantle seismic structure and their dynamic origin. The present-day Earth’s mantle is predominated by long-wavelength structures (i.e., degree-2 in the lower mantle and LLSVPs near the core-mantle boundary) and linear structures in subduction zones, both of which can be interpreted as a result of mantle convection modulated by surface plate motion history in the last 100 million years. The second is on the long- and intermediate-wavelength geoid and gravity anomalies and their dynamic interpretation. The geoid anomalies are explained by mantle flow that is driven by buoyancy associated with the mantle structure. Such studies indicate that the upper mantle is at least one magnitude weaker than the lower mantle and strongly suggest the existence of a weak asthenosphere. Third, the cyclic process of formation and breakup of supercontinents Pangea and Rodinia is surface manifestation of time-dependent mantle convection. During supercontinent formation and its early stage, mantle structure is predominately degree-1 with cold downwellings in one hemisphere and hot upwellings in the other hemisphere. However, the degree-1 structure starts to transition to degree-2 mantle structure with two major antipodal upwelling systems (e.g., the present-day Earth) in the late stage of a supercontinent, leading to supercontinent breakup. Abundant observational and dynamic evidence support the 1-2-1 model for supercontinent cycle and mantle structure evolution. The fourth is on the origin of plate tectonics and long-term thermal evolution of the Earth which is a fundamentally important but also controversial topic in the studies of earth science. 
    more » « less
  5. Abstract

    The occurrence of plate tectonic processes on Earth during the Paleoproterozoic is supported by ca. 2.2–1.8 Ga subduction‐collision orogens associated with the assembly of the Columbia‐Nuna supercontinent. Subsequent supercontinent breakup is evidence by global ca. 1.8–1.6 Ga large igneous provinces. The North China craton is notable for containing Paleoproterozoic orogens along its margins, herein named the Northern Margin orogen, yet the nature and timing of orogenic and extensional processes of these orogens and their role in the supercontinent cycle remain unclear. In this contribution, we present new field observations, U‐Pb zircon and baddeleyite geochronology dates, and major/trace‐element and isotope geochemical analyses from the northern margin of the North China craton that detail its Paleoproterozoic tectonic and magmatic history. Specifically, we record the occurrence of ca. 2.2–2.0 Ga magmatic arc rocks, ca. 1.9–1.88 Ga tectonic mélange and mylonitic shear zones, and folded lower Paleoproterozoic strata. These rocks were affected by ca. 1.9–1.8 Ga granulite‐facies metamorphism and ca. 1.87–1.78 Ga post‐collisional, extension‐related magmatism along the cratonal northern margin. We interpret that the generation and emplacement of these rocks, and the coupled metamorphic and magmatic processes, were related to oceanic subduction and subsequent continent‐continent collision during the Paleoproterozoic. The occurrence of ca. 1.77–1.73 Ga mafic dykes and ca. 1.75 Ga mylonitic shear zones along the northern margin of the North China craton may have been related to a regional mantle plume event. Our results are consistent with modern style plate tectonics, including oceanic subduction‐related plate convergence and continent‐continent collision, operating in the Paleoproterozoic.

     
    more » « less