This article provides a review on the studies of large temporal and spatial scale dynamics of the Earth’s mantle. The review focuses on relevant observations and their geodynamic interpretations and implications. These observations include present-day Earth’s plate tectonics, long- and intermediate-wavelength geoid and gravity anomalies, and mantle seismic structures, as well as important tectonism and magmatism that have happened in the last one billion years, associated with the formation and breakup of supercontinents Pangea and Rodinia. Much of the discussion is centered on how these observations have motivated geodynamic studies and modeling that seek to understand and interpret the observations. This review covers four topics. The first is on the primary characteristics of mantle seismic structure and their dynamic origin. The present-day Earth’s mantle is predominated by long-wavelength structures (i.e., degree-2 in the lower mantle and LLSVPs near the core-mantle boundary) and linear structures in subduction zones, both of which can be interpreted as a result of mantle convection modulated by surface plate motion history in the last 100 million years. The second is on the long- and intermediate-wavelength geoid and gravity anomalies and their dynamic interpretation. The geoid anomalies are explained by mantle flow that is driven by buoyancy associated with the mantle structure. Such studies indicate that the upper mantle is at least one magnitude weaker than the lower mantle and strongly suggest the existence of a weak asthenosphere. Third, the cyclic process of formation and breakup of supercontinents Pangea and Rodinia is surface manifestation of time-dependent mantle convection. During supercontinent formation and its early stage, mantle structure is predominately degree-1 with cold downwellings in one hemisphere and hot upwellings in the other hemisphere. However, the degree-1 structure starts to transition to degree-2 mantle structure with two major antipodal upwelling systems (e.g., the present-day Earth) in the late stage of a supercontinent, leading to supercontinent breakup. Abundant observational and dynamic evidence support the 1-2-1 model for supercontinent cycle and mantle structure evolution. The fourth is on the origin of plate tectonics and long-term thermal evolution of the Earth which is a fundamentally important but also controversial topic in the studies of earth science.
more »
« less
The role of subduction in the formation of Pangean oceanic large igneous provinces
Abstract Large igneous provinces (LIPs) have been linked to both surface and deep mantle processes. During the formation, tenure, and breakup of the supercontinent Pangea, there is an increase in emplacement events for both continental and oceanic LIPs. There is currently no clear consensus on the origin of LIPs, but a hypothesis relates their formation to crustal emplacement of hot plume material originating in the deep mantle. The interaction of subducted slabs with the lowermost mantle thermal boundary and subsequent return-flow is a key control on such plume generation. This mechanism has been explored for LIPs below the interior of a supercontinent (i.e., continental LIPs). However, a number of LIPs formed exterior to Pangea (e.g., Ontong Java Plateau), with no consensus on their formation mechanism. Here, we consider the dynamics of supercontinent processes as predicted by numerical models of mantle convection, and analyse whether circum-supercontinent subduction could generate both interior (continental) and exterior (oceanic) deep-mantle plumes. Our numerical models show that subduction related to the supercontinent cycle can reproduce the location and timing of the Ontong Java Plateau, Caribbean LIP, and potentially the Shatsky Rise, by linking the origin of these LIPs to the return-flow that generated deep mantle exterior plumes.
more »
« less
- PAR ID:
- 10428142
- Date Published:
- Journal Name:
- Geological Society, London, Special Publications
- Volume:
- 542
- Issue:
- 1
- ISSN:
- 0305-8719
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effect of mantle plumes is secondary to that of subducting slabs for modern plate tectonics when considering plate driving forces. However, the impact of plumes on tectonics and planetary surface evolution may nonetheless have been significant. We use numerical mantle convection models in a 3‐D spherical chunk geometry with damage rheology to study some of the dynamics of plume‐slab interactions. Substantiating our earlier 2‐D results, we observe a range of interaction scenarios, and that the plume‐driven subduction terminations we had identified earlier persist in more realistic convective flow. We analyze the dynamics of plume affected subduction, including in terms of their geometry, frequency, and the overall effect of plumes on surface dynamics as a function of the fraction of internal to bottom heating. Some versions of such plume‐slab interplay may be relevant for geologic events, for example, for the inferred ∼183 Ma Karoo large igneous province formation and associated slab disruption. More recent examples may include the impingement of the Afar plume underneath Africa leading to disruption of the Hellenic slab, and the current complex structure imaged for the subduction of the Nazca plate under South America. Our results imply that plumes may play a significant role not just in kick‐starting plate tectonics, but also in major modifications of slab‐driven plate motions, including for the present‐day mantle.more » « less
-
Abstract The occurrence of plate tectonic processes on Earth during the Paleoproterozoic is supported by ca. 2.2–1.8 Ga subduction‐collision orogens associated with the assembly of the Columbia‐Nuna supercontinent. Subsequent supercontinent breakup is evidence by global ca. 1.8–1.6 Ga large igneous provinces. The North China craton is notable for containing Paleoproterozoic orogens along its margins, herein named the Northern Margin orogen, yet the nature and timing of orogenic and extensional processes of these orogens and their role in the supercontinent cycle remain unclear. In this contribution, we present new field observations, U‐Pb zircon and baddeleyite geochronology dates, and major/trace‐element and isotope geochemical analyses from the northern margin of the North China craton that detail its Paleoproterozoic tectonic and magmatic history. Specifically, we record the occurrence of ca. 2.2–2.0 Ga magmatic arc rocks, ca. 1.9–1.88 Ga tectonic mélange and mylonitic shear zones, and folded lower Paleoproterozoic strata. These rocks were affected by ca. 1.9–1.8 Ga granulite‐facies metamorphism and ca. 1.87–1.78 Ga post‐collisional, extension‐related magmatism along the cratonal northern margin. We interpret that the generation and emplacement of these rocks, and the coupled metamorphic and magmatic processes, were related to oceanic subduction and subsequent continent‐continent collision during the Paleoproterozoic. The occurrence of ca. 1.77–1.73 Ga mafic dykes and ca. 1.75 Ga mylonitic shear zones along the northern margin of the North China craton may have been related to a regional mantle plume event. Our results are consistent with modern style plate tectonics, including oceanic subduction‐related plate convergence and continent‐continent collision, operating in the Paleoproterozoic.more » « less
-
The relative significance of various geodynamic mechanisms that drive supercontinent breakup is unclear. A previous analysis of extensional stress during supercontinent breakup demonstrated the importance of the plume‐push force relative to the dragging force of subduction retreat. Here, we extend the analysis to basal traction (shear stress) and cross‐lithosphere integrations of both extensional and shear stresses, aiming to understand more clearly the relevant importance of these mechanisms in supercontinent breakup. More importantly, we evaluate the effect of preexisting orogens (mobile belts) in the lithosphere on supercontinent breakup process. Our analysis suggests that a homogeneous supercontinent has extensional stress of 20–50 MPa in its interior (<40° from the central point). When orogens are introduced, the extensional stress in the continents focuses on the top 80‐km of the lithosphere with an average magnitude of ~160 MPa, whereas at the margin of the supercontinent the extensional stress is 5–50 MPa. In both homogeneous and orogeny‐embedded cases, the subsupercontinent mantle upwellings act as the controlling factor on the normal stress field in the supercontinent interior. Compared with the extensional stress, shear stress at the bottom of the supercontinent is 1–2 order of magnitude smaller (0–5 MPa). In our two end‐member models, the breakup of a supercontinent with orogens can be achieved after the first extensional stress surge, whereas for a hypothetical supercontinent without orogens it starts with more diffused local thinning of the continental lithospheric before the breakup, suggesting that weak orogens play a critical role in the dispersal of supercontinents.more » « less
-
Abstract River plumes are a dominant forcing agent in the coastal ocean, transporting tracers and nutrients offshore and interacting with coastal circulation. In this study we characterize the novel “cross-shelf” regime of freshwater river plumes. Rather than remaining coastally trapped (a well-established regime), a wind-driven cross-shelf plume propagates for tens to over 100 km offshore of the river mouth while remaining coherent. We perform a suite of high-resolution idealized numerical experiments that offer insight into how the cross-shelf regime comes about and the parameter space it occupies. The wind-driven shelf flow comprising the geostrophic along-shelf and the Ekman cross-shelf transport advects the plume momentum and precludes geostrophic adjustment within the plume, leading to continuous generation of internal solitons in the offshore and upstream segment of the plume. The solitons propagate into the plume interior, transporting mass within the plume and suppressing plume widening. We examine an additional ultra-high-resolution case that resolves submesoscale dynamics. This case is dynamically consistent with the lower-resolution simulations, but additionally captures vigorous inertial-symmetric instability leading to frontal erosion and lateral mixing. We support these findings with observations of the Winyah Bay plume, where the cross-shelf regime is observed under analogous forcing conditions to the model. The study offers an in-depth introduction to the cross-shelf plume regime and a look into the submesoscale mixing phenomena arising in estuarine plumes. Significance StatementIn this study, we characterize a novel regime of freshwater river plumes. Rather than spreading near to or along the coast, under certain conditions river plumes may propagate away from the coast and remain coherent for tens to over 100 km offshore. Cross-shelf plumes provide a mechanism by which freshwater and river-borne materials may be transported into the open ocean, especially across wide continental shelves. Such plumes carry nutrients critical for biological productivity offshore and interact with large-scale oceanic features such as the Gulf Stream. We use high-resolution numerical modeling to examine how the cross-shelf regime arises and support our findings with observational evidence. We also study the mixing phenomena and fluid instabilities evolving within such plumes.more » « less
An official website of the United States government

