Abstract Superluminous supernovae (SLSNe) radiate ≳10–100 times more energy than ordinary stellar explosions, implicating a novel power source behind these enigmatic events. One frequently discussed source, particularly for hydrogen-poor (Type I) SLSNe, is a central engine such as a millisecond magnetar or accreting black hole. Both black hole and magnetar engines are expected to channel a fraction of their luminosity into a collimated relativistic jet. Using 3D relativistic hydrodynamical simulations, we explore the interaction of a relativistic jet, endowed with a luminosityLj≈ 1045.5erg s−1and durationteng≈ 10 days compatible with those needed to power SLSNe, launched into the envelope of the exploding star. The jet successfully breaks through the expanding ejecta, and its shocked cocoon powers ultraviolet/optical emission lasting several days after the explosion and reaching a peak luminosity ≳1044erg s−1, corresponding to a sizable fraction ofLj. This high radiative efficiency is the result of the modest adiabatic losses the cocoon experiences owing to the low optical depths of the enlarged ejecta at these late times, e.g., compared to the more compact stars in gamma-ray bursts. The luminosity and temperature of the cocoon emission match those of the “bumps” in SLSN light curves observed weeks prior to the optical maximum in many SLSNe. Confirmation of jet breakout signatures by future observations (e.g., days-long to weeks-long internal X-ray emission from the jet for on-axis observers, spectroscopy confirming large photosphere velocitiesv/c≳ 0.1, or detection of a radio afterglow) would offer strong evidence for central engines powering SLSNe.
more »
« less
VERITAS and Fermi-LAT Constraints on the Gamma-Ray Emission from Superluminous Supernovae SN2015bn and SN2017egm
Abstract Superluminous supernovae (SLSNe) are a rare class of stellar explosions with luminosities ∼ 10–100 times greater than ordinary core-collapse supernovae. One popular model to explain the enhanced optical output of hydrogen-poor (Type I) SLSNe invokes energy injection from a rapidly spinning magnetar. A prediction in this case is that high-energy gamma-rays, generated in the wind nebula of the magnetar, could escape through the expanding supernova ejecta at late times (months or more after optical peak). This paper presents a search for gamma-ray emission in the broad energy band from 100 MeV to 30 TeV from two Type I SLSNe, SN2015bn, and SN2017egm, using observations from Fermi-LAT and VERITAS. Although no gamma-ray emission was detected from either source, the derived upper limits approach the putative magnetar’s spin-down luminosity. Prospects are explored for detecting very-high-energy (VHE; 100 GeV–100 TeV) emission from SLSNe-I with existing and planned facilities such as VERITAS and CTA.
more »
« less
- Award ID(s):
- 2011361 2110497 2110974 2200857 2209437 1913552 2209605 1913798 2012916 2110737 1911061 2011420 2111531
- PAR ID:
- 10428574
- Author(s) / Creator(s):
- ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 945
- Issue:
- 1
- ISSN:
- 0004-637X
- Page Range / eLocation ID:
- 30
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Flat-spectrum radio quasars (FSRQs) are the most luminous blazars at GeV energies but only rarely emit detectable fluxes of TeV gamma rays, typically during bright GeV flares. We explore the gamma-ray variability and spectral characteristics of three FSRQs that have been observed at GeV and TeV energies by Fermi-LAT and VERITAS, making use of almost 100 hr of VERITAS observations spread over 10 yr: 3C 279, PKS 1222+216, and Ton 599. We explain the GeV flux distributions of the sources in terms of a model derived from a stochastic differential equation describing fluctuations in the magnetic field in the accretion disk and estimate the timescales of magnetic flux accumulation and stochastic instabilities in their accretion disks. We identify distinct flares using a procedure based on Bayesian blocks and analyze their daily and subdaily variability and gamma-ray energy spectra. Using observations from VERITAS, as well as Fermi, Swift, and the Steward Observatory, we model the broadband spectral energy distributions of PKS 1222+216 and Ton 599 during very high energy (VHE)–detected flares in 2014 and 2017, respectively, strongly constraining the jet Doppler factors and gamma-ray emission region locations during these events. Finally, we place theoretical constraints on the potential production of PeV-scale neutrinos during these VHE flares.more » « less
-
Abstract We present an extensive Hubble Space Telescope rest-frame UV imaging study of the locations of Type I superluminous supernovae (SLSNe) within their host galaxies. The sample includes 65 SLSNe with detected host galaxies in the redshift rangez≈ 0.05–2. Using precise astrometric matching with SN images, we determine the distributions of the physical and host-normalized offsets relative to the host centers, as well as the fractional flux distribution relative to the underlying UV light distributions. We find that the host-normalized offsets of SLSNe roughly track an exponential disk profile, but exhibit an overabundance of sources with large offsets of 1.5–4 times their hosts' half-light radii. The SLSNe normalized offsets are systematically larger than those of long gamma-ray bursts (LGRBs), and even Type Ib/c and Type II SNe. Furthermore, we find from a Monte Carlo procedure that about of SLSNe occur in the dimmest regions of their host galaxies, with a median fractional flux value of 0.16, in stark contrast to LGRBs and Type Ib/c and Type II SNe. We do not detect any significant trends in the locations of SLSNe as a function of redshift, or as a function of explosion and magnetar engine parameters inferred from modeling of their optical light curves. The significant difference in SLSN locations compared to LGRBs (and normal core-collapse SNe) suggests that at least some of their progenitors follow a different evolutionary path. We speculate that SLSNe arise from massive runaway stars from disrupted binary systems, with velocities of ∼102km s−1.more » « less
-
Abstract We report the detection of very high energy gamma-ray emission from the blazar S3 1227+25 (VER J1230+253) with the Very Energetic Radiation Imaging Telescope Array System (VERITAS). VERITAS observations of the source were triggered by the detection of a hard-spectrum GeV flare on 2015 May 15 with the Fermi-Large Area Telescope (LAT). A combined 5 hr VERITAS exposure on May 16 and 18 resulted in a strong 13 σ detection with a differential photon spectral index, Γ = 3.8 ± 0.4, and a flux level at 9% of the Crab Nebula above 120 GeV. This also triggered target-of-opportunity observations with Swift, optical photometry, polarimetry, and radio measurements, also presented in this work, in addition to the VERITAS and Fermi-LAT data. A temporal analysis of the gamma-ray flux during this period finds evidence of a shortest variability timescale of τ obs = 6.2 ± 0.9 hr, indicating emission from compact regions within the jet, and the combined gamma-ray spectrum shows no strong evidence of a spectral cutoff. An investigation into correlations between the multiwavelength observations found evidence of optical and gamma-ray correlations, suggesting a single-zone model of emission. Finally, the multiwavelength spectral energy distribution is well described by a simple one-zone leptonic synchrotron self-Compton radiation model.more » « less
-
Extreme high-synchrotron-peak blazars (EHSPs) are postulated as the most efficient and extreme particle accelerators in the universe but remain enigmatic as a possible new class of TeV gamma- ray blazars. Blazars are active galactic nuclei (AGNs) with jets of relativistic particles that generate non-thermal emission pointed along the line-of-sight. Their spectral energy distribution (SED) are characterized by synchrotron and inverse-Compton peaks, indicating acceleration of leptonic and possibly hadronic particle populations in the jet. EHSPs are characterized by a peak synchrotron frequency > 1017 Hz with their Compton peak expected to fall in the TeV range. Indeed, the handful of EHSPs detected by Imaging Air Cherenkov Telescopes (IACTs) have presented challenges where some may be a high-frequency extension of the blazar sequence while others peaking around 10 TeV may represent a different class of TeV emitters. Detections of the high-energy and very-high-energy (HE; E > 100 MeV, VHE; E > 100 GeV) components of the Compton peak will play an important role in constraining the acceleration model derived from the SED. We present the discovery of TeV emission from RBS 1366, a candidate EHSP, by the VERITAS observatory. Using HE and VHE data from the Fermi-LAT and VERITAS observatories, respectively, we characterize the detection by providing an SED and model fit in the context of other EHSP candidates. Our work confirms the status of RBS 1366 as an EHBL.more » « less
An official website of the United States government

