We prove two finiteness results for reductions of Hecke orbits of abelian varieties over local fields: one in the case of supersingular reduction and one in the case of reductive monodromy. As an application, we show that only finitely many abelian varieties on a fixed isogeny leaf admit CM lifts, which in particular implies that in each fixed dimensiongonly finitely many supersingular abelian varieties admit CM lifts. Combining this with the Kuga–Satake construction, we also show that only finitely many supersingular K3surfaces admit CM lifts. Our tools includep-adic Hodge theory and group-theoretic techniques.
more »
« less
Perfect points on curves of genus 1 and consequences for supersingular K3 surfaces
We describe a method to show that certain elliptic surfaces do not admit purely inseparable multisections (equivalently, that genus 1 curves over function fields admit no points over the perfect closure of the base field) and use it to show that any non-Jacobian elliptic structure on a very general supersingular K3 surface has no purely inseparable multisections. We also describe specific examples of genus 1 fibrations on supersingular K3 surfaces without purely inseparable multisections.
more »
« less
- PAR ID:
- 10429181
- Date Published:
- Journal Name:
- Compositio Mathematica
- Volume:
- 158
- Issue:
- 5
- ISSN:
- 0010-437X
- Page Range / eLocation ID:
- 1052 to 1083
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We show that the K-moduli spaces of log Fano pairs $$({\mathbb {P}}^3, cS)$$ ( P 3 , c S ) where S is a quartic surface interpolate between the GIT moduli space of quartic surfaces and the Baily–Borel compactification of moduli of quartic K3 surfaces as c varies in the interval (0, 1). We completely describe the wall crossings of these K-moduli spaces. As the main application, we verify Laza–O’Grady’s prediction on the Hassett–Keel–Looijenga program for quartic K3 surfaces. We also obtain the K-moduli compactification of quartic double solids, and classify all Gorenstein canonical Fano degenerations of $${\mathbb {P}}^3$$ P 3 .more » « less
-
Abstract Deligne [9] showed that every K3 surface over an algebraically closed field of positive characteristic admits a lift to characteristic 0. We show the same is true for a twisted K3 surface. To do this, we study the versal deformation spaces of twisted K3 surfaces, which are particularly interesting when the characteristic divides the order of the Brauer class. We also give an algebraic construction of certain moduli spaces of twisted K3 surfaces over $${\operatorname {Spec}}\ \textbf {Z}$$ and apply our deformation theory to study their geometry. As an application of our results, we show that every derived equivalence between twisted K3 surfaces in positive characteristic is orientation preserving.more » « less
-
Abstract We consider a product $$X=E_1\times \cdots \times E_d$$ of elliptic curves over a finite extension $$K$$ of $${\mathbb{Q}}_p$$ with a combination of good or split multiplicative reduction. We assume that at most one of the elliptic curves has supersingular reduction. Under these assumptions, we prove that the Albanese kernel of $$X$$ is the direct sum of a finite group and a divisible group, extending work by Raskind and Spiess to cases that include supersingular phenomena. Our method involves studying the kernel of the cycle map $$CH_0(X)/p^n\rightarrow H^{2d}_{\acute{\textrm{e}}\textrm{t}}(X, \mu _{p^n}^{\otimes d})$$. We give specific criteria that guarantee this map is injective for every $$n\geq 1$$. When all curves have good ordinary reduction, we show that it suffices to extend to a specific finite extension $$L$$ of $$K$$ for these criteria to be satisfied. This extends previous work by Yamazaki and Hiranouchi.more » « less
-
We examine questions about surgery on links which arise naturally from the trisection decomposition of 4-manifolds developed by Gay and Kirby \cite{G-K3}. These links lie on Heegaard surfaces in $$\#^j S^1 \times S^2$$ and have surgeries yielding $$\#^k S^1 \times S^2$$. We describe families of links which have such surgeries. One can ask whether all links with such surgeries lie in these families; the answer is almost certainly no. We nevertheless give a small piece of evidence in favor of a positive answer.more » « less
An official website of the United States government

