skip to main content

This content will become publicly available on January 1, 2024

Title: Measurement of the 86 Kr(α,n) 89 Sr cross section at energies relevant for the weak r-process
The r-process has been shown to be robust in reproducing the abundance distributions of heavy elements, such as europium, seen in ultra-metal poor stars. In contrast, observations of elements 26 < Z < 47 display overabundances relative to r-process model predictions. A proposed additional source of early nucleosynthesis is the weak r-process in neutrino-driven winds of core-collapse supernovae. It has been shown that in this site ( α ,n) reactions are both crucial to nucleosynthesis and the main source of uncertainty in model-based abundance predictions. Aiming to improve the certainty of nucleosynthesis predictions, the cross section of the important reaction 86 Kr( α ,n) 89 Sr has been measured at an energy relevant to the weak r-process. This experiment was conducted in inverse kinematics at TRIUMF with the EMMA recoil mass spectrometer and the TIGRESS gamma-ray spectrometer. A novel type of solid helium target was used.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Freeman, S.; Lederer-Woods, C.; Manna, A.; Mengoni, A.
Date Published:
Journal Name:
EPJ Web of Conferences
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Liu, W. ; Wang, Y. ; Guo, B. ; Tang, X. ; Zeng, S. (Ed.)
    Various nucleosynthesis studies have pointed out that the rapid neutron capture r-process elements in very metal-poor (VMP) halo stars might have different origins. It has been known that an r-process can either be obtained in neutron-rich low Ye conditions or in high entropy environments [see e.g. 1–5], an overview over many investigations has appeared recently [6]. In the present article we analyze with statistical methods the observational abundance patterns from trans-Fe elements up to the actinides and come to the conclusion that four to five categories of astrophysical events must have contributed. These include the ejection of Fe and trans-Fe elements Sr, Y, Zr (continuing possibly beyond to slightly higher mass numbers) in category 0 events (hereafter "C0"), Fe and weak r-process contributions (including Eu in moderate to slightly larger but varying amounts) in CI and CII events, strong r-process abundance patterns with no or negligible (in comparison to solar) Fe production in CIIIa and CIIIb events, where category CIIIb shows a tendency for an actinide boost behavior. When comparing these categories with presently existing nucleosynthesis predictions, we suggest to identify them (despite remaining uncertainties) with regular core-collapse supernovae, quark deconfinement supernovae, magneto-rotational supernovae, neutron star mergers, and outflows from black hole accretion tori. 
    more » « less
  2. Abstract

    We demonstrate that using up to seven stellar abundance ratios can place observational constraints on the star formation histories (SFHs) of Local Group dSphs, using Sculptor dSph as a test case. We use a one-zone chemical evolution model to fit the overall abundance patterns ofαelements (which probe the core-collapse supernovae that occur shortly after star formation),s-process elements (which probe AGB nucleosynthesis at intermediate delay times), and iron-peak elements (which probe delayed Type Ia supernovae). Our best-fit model indicates that Sculptor dSph has an ancient SFH, consistent with previous estimates from deep photometry. However, we derive a total star formation duration of ∼0.9 Gyr, which is shorter than photometrically derived SFHs. We explore the effect of various model assumptions on our measurement and find that modifications to these assumptions still produce relatively short SFHs of duration ≲1.4 Gyr. Our model is also able to compare sets of predicted nucleosynthetic yields for supernovae and AGB stars, and can provide insight into the nucleosynthesis of individual elements in Sculptor dSph. We find that observed [Mn/Fe] and [Ni/Fe] trends are most consistent with sub-MChType Ia supernova models, and that a combination of “prompt” (delay times similar to core-collapse supernovae) and “delayed” (minimum delay times ≳50 Myr)r-process events may be required to reproduce observed [Ba/Mg] and [Eu/Mg] trends.

    more » « less
  3. ABSTRACT Massive stars are crucial to galactic chemical evolution for elements heavier than iron. Their contribution at early times in the evolution of the Universe, however, is unclear due to poorly constrained nuclear reaction rates. The competing 17O(α, γ)21Ne and 17O(α, n)20Ne reactions strongly impact weak s-process yields from rotating massive stars at low metallicities. Abundant 16O absorbs neutrons, removing flux from the s-process, and producing 17O. The 17O(α, n)20Ne reaction releases neutrons, allowing continued s-process nucleosynthesis, if the 17O(α, γ)21Ne reaction is sufficiently weak. While published rates are available, they are based on limited indirect experimental data for the relevant temperatures and, more importantly, no uncertainties are provided. The available nuclear physics has been evaluated, and combined with data from a new study of astrophysically relevant 21Ne states using the 20Ne(d, p)21Ne reaction. Constraints are placed on the ratio of the (α, n)/(α, γ) reaction rates with uncertainties on the rates provided for the first time. The new rates favour the (α, n) reaction and suggest that the weak s-process in rotating low-metallicity stars is likely to continue up to barium and, within the computed uncertainties, even to lead. 
    more » « less

    Several anomalous elemental abundance ratios have been observed in the metal-poor star HD94028. We assume that its high [As/Ge] ratio is a product of a weak intermediate (i) neutron-capture process. Given that observational errors are usually smaller than predicted nuclear physics uncertainties, we have first set-up a benchmark one-zone i-process nucleosynthesis simulation results of which provide the best fit to the observed abundances. We have then performed Monte Carlo simulations in which 113 relevant (n,γ) reaction rates of unstable species were randomly varied within Hauser–Feshbach model uncertainty ranges for each reaction to estimate the impact on the predicted stellar abundances. One of the interesting results of these simulations is a double-peaked distribution of the As abundance, which is caused by the variation of the 75Ga (n,γ) cross-section. This variation strongly anticorrelates with the predicted As abundance, confirming the necessity for improved theoretical or experimental bounds on this cross-section. The 66Ni (n,γ) reaction is found to behave as a major bottleneck for the i-process nucleosynthesis. Our analysis finds the Pearson product–moment correlation coefficient rP > 0.2 for all of the i-process elements with 32 ≤ Z ≤ 42, with significant changes in their predicted abundances showing up when the rate of this reaction is reduced to its theoretically constrained lower bound. Our results are applicable to any other stellar nucleosynthesis site with the similar i-process conditions, such as Sakurai’s object (V4334 Sagittarii) or rapidly accreting white dwarfs.

    more » « less
  5. Abstract A promising astrophysical site to produce the lighter heavy elements of the first r -process peak ( Z = 38 − 47) is the moderately neutron-rich (0.4 < Y e < 0.5) neutrino-driven ejecta of explosive environments, such as core-collapse supernovae and neutron star mergers, where the weak r -process operates. This nucleosynthesis exhibits uncertainties from the absence of experimental data from ( α , xn ) reactions on neutron-rich nuclei, which are currently based on statistical model estimates. In this work, we report on a new study of the nuclear reaction impact using a Monte Carlo approach and improved ( α , xn ) rates based on the Atomki-V2 α optical model potential. We compare our results with observations from an up-to-date list of metal-poor stars with [Fe/H] < −1.5 to find conditions of the neutrino-driven wind where the lighter heavy elements can be synthesized. We identified a list of ( α , xn ) reaction rates that affect key elemental ratios in different astrophysical conditions. Our study aims to motivate more nuclear physics experiments on ( α , xn ) reactions using the current and new generation of radioactive beam facilities and also more observational studies of metal-poor stars. 
    more » « less