We constructed the magnetic field-temperature phase diagrams of new quasi-two-dimensional isosceles triangular lattice antiferromagnets (TLAF) Ca 3 MNb 2 O 9 (M=Co, Ni) from dc and ac magnetic susceptibilities, specific heat, dielectric constant, and electric polarization measurements on single crystalline samples. Ca 3 CoNb 2 O 9 with effective spin-1/2 Co 2+ ions undergoes a two-step antiferromagnetic phase transition at T N1 = 1.3 K and T N2 = 1.5 K and enters a stripe ordered state at zero magnetic field. With increasing field, successive magnetic phase transitions, reminiscent of the up-up-down ( uud ) and the oblique phases, are observed. The dielectric constant of Ca 3 CoNb 2 O 9 shows anomalies related to the magnetic phase transitions, but clear evidence of ferroelectricity is absent. Meanwhile, Ca 3 NiNb 2 O 9 with spin-1 Ni 2+ ions also shows a two-step antiferromagnetic transition at T N1 = 3.8 K and T N2 = 4.2 K at zero field. For Ca 3 NiNb 2 O 9 , the electric polarization in the magnetic ordered phases was clearly observed from the pyroelectric current measurements, which indicates its coexistence of magnetic ordering and ferroelectricity. 
                        more » 
                        « less   
                    
                            
                            Electrical, optical, and magnetic properties of amorphous yttrium iron oxide thin films and consequences for non-local resistance measurements
                        
                    
    
            We present magnetic characterization, charge resistivity, and optical photoluminescence measurements on amorphous yttrium iron oxide thin films (a-Y–Fe–O), with supporting comparisons to amorphous germanium (a-Ge) films. We measured magnetic properties with both SQUID magnetometry and polarized neutron reflectometry. These results not only confirm that a-Y–Fe–O is a disordered magnetic material with strong predominantly antiferromagnetic exchange interactions and a high degree of frustration, but also that it is best understood electrically as a disordered semiconductor. As with amorphous germanium, a-Y–Fe–O obeys expectations for variable-range hopping through localized electron states over a wide range of temperature. We also clarify the consequences of charge transport through such a semiconducting medium for non-local voltage measurements intended to probe spin transport in nominally insulating magnetic materials. We further compare non-local resistance measurements made with “quasi-dc” automated current reversal to ac measurements made with a lock-in amplifier. These show that the “quasi-dc” measurement has an effective ac current excitation with frequency up to approximately 22 Hz, and that this effective ac excitation can cause artifacts in these measurements including incorrect sign of the non-local resistance. This comprehensive investigation of non-local resistance measurements in a-Y–Fe–O shows no evidence of spin transport on micrometer length scales, which is contrary to our original work, and in line with more recent investigations by other groups. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10429200
- Date Published:
- Journal Name:
- Journal of Applied Physics
- Volume:
- 133
- Issue:
- 22
- ISSN:
- 0021-8979
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            null (Ed.)Iron-based extended metal atom chains (EMACs) are potentially high-spin molecules with axial magnetic anisotropy and thus candidate single-molecule magnets (SMMs). We herein compare the tetrairon( ii ), halide-capped complexes [Fe 4 (tpda) 3 Cl 2 ] ( 1Cl ) and [Fe 4 (tpda) 3 Br 2 ] ( 1Br ), obtained by reacting iron( ii ) dihalides with [Fe 2 (Mes) 4 ] and N 2 , N 6 -di(pyridin-2-yl)pyridine-2,6-diamine (H 2 tpda) in toluene, under strictly anhydrous and anaerobic conditions (HMes = mesitylene). Detailed structural, electrochemical and Mössbauer data are presented along with direct-current (DC) and alternating-current (AC) magnetic characterizations. DC measurements revealed similar static magnetic properties for the two derivatives, with χ M T at room temperature above that for independent spin carriers, but much lower at low temperature. The electronic structure of the iron( ii ) ions in each derivative was explored by ab initio (CASSCF-NEVPT2-SO) calculations, which showed that the main magnetic axis of all metals is directed close to the axis of the chain. The outer metals, Fe1 and Fe4, have an easy-axis magnetic anisotropy ( D = −11 to −19 cm −1 , | E / D | = 0.05–0.18), while the internal metals, Fe2 and Fe3, possess weaker hard-axis anisotropy ( D = 8–10 cm −1 , | E / D | = 0.06–0.21). These single-ion parameters were held constant in the fitting of DC magnetic data, which revealed ferromagnetic Fe1–Fe2 and Fe3–Fe4 interactions and antiferromagnetic Fe2–Fe3 coupling. The competition between super-exchange interactions and the large, noncollinear anisotropies at metal sites results in a weakly magnetic non-Kramers doublet ground state. This explains the SMM behavior displayed by both derivatives in the AC susceptibility data, with slow magnetic relaxation in 1Br being observable even in zero static field.more » « less
- 
            Abstract Mixed‐conducting perovskites are workhorse electrochemically active materials, but typical high‐temperature processing compromises their catalytic activity and chemo‐mechanical integrity. Low‐temperature pulsed laser deposition of amorphous films plus mild thermal annealing is an emerging route to form homogeneous mixed conductors with exceptional catalytic activity, but little is known about the evolution of the oxide‐ion transport and transference numbers during crystallization. Here the coupled evolution of ionic and electronic transport behavior and structure in room‐temperature‐grown amorphous (La,Sr)(Ga,Fe)O3‐xfilms as they crystallize is explored.In situ ac‐impedance spectroscopy with and without blocking electrodes, simultaneous capturingsynchrotron‐grazing‐incidence X‐ray diffraction, dc polarization, transmission electron microscopy, and molecular dynamics simulations are combined to evaluate isothermal and non‐isothermal crystallization effects and the role of grain boundaries on transference numbers. Ionic conductivity increases by ≈2 orders of magnitude during crystallization, with even larger increases in electronic conductivity. Consequently, as crystallinity increases, LSGF transitions from a predominantly ionic conductor to a predominantly electronic conductor. The roles of evolving lattice structural order, microstructure, and defect chemistry are examined. Grain boundaries appear relatively nonblocking electronically but significantly blocking ionically. The results demonstrate that ionic transference numbers can be tailored over a wide range by tuning crystallinity and microstructure without having to change the cation composition.more » « less
- 
            For applications such as spin accumulation sensors for next-generation hard disk drive read heads, and for fundamental research, it is desirable to increase the spin signal in metallic non-local spin valves, which are central devices in spintronics. To this end, here, we report on the integration of high-spin-polarization Co–Fe binary alloy ferromagnetic injectors and detectors in Al-based non-local spin valves. Room-temperature deposition on amorphous substrates from an alloy target is shown to generate smooth, polycrystalline (110-textured), solid-solution body-centered-cubic Co75Fe25 films, which we characterize by energy dispersive x-ray spectroscopy, x-ray diffraction, x-ray reflectivity, atomic force microscopy, and electronic transport. Simple integration into transparent-interface Al non-local spin valves is then shown to realize up to a factor of ∼5 enhancement of the spin signal relative to Co, with full quantitative analysis yielding strikingly temperature-independent current spin polarizations exceeding 60%. We make a detailed quantitative comparison of these values with prior literature, concluding that Co–Fe alloys present a remarkably facile route to higher spin polarization and spin signals in non-local spin valves, with minimal barrier to adoption.more » « less
- 
            Abstract Investigations of magnetically ordered phases on the femtosecond timescale have provided significant insights into the influence of charge and lattice degrees of freedom on the magnetic sub-system. However, short-range magnetic correlations occurring in the absence of long-range order, for example in spin-frustrated systems, are inaccessible to many ultrafast techniques. Here, we show how time-resolved resonant inelastic X-ray scattering (trRIXS) is capable of probing such short-ranged magnetic dynamics in a charge-transfer insulator through the detection of a Zhang–Rice singlet exciton. Utilizing trRIXS measurements at the O K -edge, and in combination with model calculations, we probe the short-range spin correlations in the frustrated spin chain material CuGeO 3 following photo-excitation, revealing a strong coupling between the local lattice and spin sub-systems.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    