Abstract The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum withT≈ 104K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log10column mass/[g cm−2] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy aboveE≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperaturesT≳ 12,000 K over the deep chromosphere with log10column mass/[g cm−2] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.
more »
« less
Can Proton Beam Heating Flare Models Explain Sunquakes?
Abstract Solar Dynamics Observatory (SDO)/Helioseismic and Magnetic Imager (HMI) observations reveal a class of solar flares with substantial energy and momentum impacts in the photosphere, concurrent with white-light emission and helioseismic responses, known as sunquakes. Previous radiative hydrodynamic modeling has demonstrated the challenges of explaining sunquakes in the framework of the standard flare model of “electron beam” heating. One of the possibilities to explain the sunquakes and other signatures of the photospheric impact is to consider additional heating mechanisms involved in solar flares, for example via flare-accelerated protons. In this work, we analyze a set of single-loop Fokker–Planck and radiative hydrodynamics RADYN+FP simulations where the atmosphere is heated by nonthermal power-law-distributed proton beams which can penetrate deeper than the electron beams into the low atmospheric layers. Using the output of the RADYN models, we calculate synthetic Fei6173 Å line Stokes profiles and from those the line-of-sight observables of the SDO/HMI instrument, as well as the 3D helioseismic response, and compare them with the corresponding observational characteristics. These initial results show that the models with proton beam heating can produce the enhancement of the HMI continuum observable and explain qualitatively the generation of sunquakes. The continuum observable enhancement is evident in all models but is more prominent in ones withEc≥ 500 keV. In contrast, the models withEc≤ 100 keV provide a stronger sunquake-like helioseismic impact according to the 3D acoustic modeling, suggesting that low-energy (deka- and hecto-keV) protons have an important role in the generation of sunquakes.
more »
« less
- PAR ID:
- 10482772
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 960
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 80
- Size(s):
- Article No. 80
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The first significant sunquake event of Solar Cycle 25 was observed during the X1.5 flare of 2022 May 10, by the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. We perform a detailed spectro-polarimetric analysis of the sunquake photospheric sources, using the Stokes profiles of the Fei6173 Å line, reconstructed from the HMI linear and circular polarized filtergrams. The results show fast variations of the continuum emission with rapid growth and slower decay lasting 3–4 minutes, coinciding in time with the hard X-ray impulses observed by the Konus instrument on board the Wind spacecraft. The variations in the line core appeared slightly ahead of the variations in the line wings, showing that the heating started in the higher atmospheric layers and propagated downward. The most significant feature of the line profile variations is the transient emission in the line core in three of the four sources, indicating intense, impulsive heating in the lower chromosphere and photosphere. In addition, the observed variations of the Stokes profiles reflect transient and permanent changes in the magnetic field strength and geometry in the sunquake sources. Comparison with the radiative hydrodynamics models shows that the physical processes in the impulsive flare phase are substantially more complex than those predicted by proton and electron beam flare models currently presented in the literature.more » « less
-
Abstract Between 2017 and 2024, the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory has observed numerous white-light solar flares (WLFs). HMI spectropolarimetric observations of certain WLFs, in particular the X9.3 flare of 2017 September 6, reveal one or more locations within the umbra or along the umbra/penumbra boundary of the flaring active region where the FeI6173 Å line briefly goes into full emission, indicating significant heating of the photosphere and lower chromosphere. For five flares featuring FeI6173 Å line-core emission, we perform spectropolarimetric analysis using HMI 90 s cadence Stokes data. For all investigated flares, line-core emission is observed to last for a single 90 s frame and is either concurrent with or followed by an increase in the line continuum intensity lasting one to two frames (90–180 s). Additionally, permanent changes to the StokesQ,U, and/orVprofiles were observed, indicating long-lasting nontransient changes to the photospheric magnetic field. These emissions coincided with local maxima in hard X-ray emission observed by Konus-Wind, as well as local maxima in the time derivative of soft X-ray emission observed by GOES 16-18. Comparison of the FeI6173 Å line profile synthesis for the ad hoc heating of the initial empirical VAL-S umbra model and quiescent-Sun (VAL-C-like) model indicates that the FeI6173 Å line emission in the white-light flare kernels could be explained by the strong heating of initially cool photospheric regions.more » « less
-
Abstract We present a unique observation of the X6.4-class flare SOL2024-02-22T22:34 using the Mid-InfraRed Imager (MIRI) at the Goode Solar Telescope. Three ribbon-like flare sources and one unidentified source were detected in MIRI’s two mid-infrared (mid-IR) bands at 5.2 and 8.2μm. The two stronger ribbons displayed maximum mid-IR enhancements of 21% and 18% above quiet-Sun levels and 10% in Helioseismic and Magnetic Imager (HMI) continuum intensity (Ic). The weak ribbon and the unidentified source had maximum mid-IR enhancements of 7% but showed HMI/Icdimmings, instead of excess emissions. Our result suggests that mid-IR emission forms in a higher layer during the flare and is more sensitive to flare heating than HMI/Icemission. The MIRI observations have high temporal resolution (2.6 s cadence in these observations) and show apparent source motions. One flare ribbon extends along weak vertical magnetic-field channels in the sunspot umbra, light bridge, and penumbra, with an approximately 30 s delay between HMI/Icand 8.2μm emissions. Meanwhile, the unidentified source moved at an apparent speed of 130 km s−1from a mixed-polarity area to one flare ribbon with a strong HMI/Icenhancement. We studied available hard X-ray/microwave imaging spectroscopy and used nonlinear force-free field extrapolation modeling to identify flare structures. The observational evidence strongly favors the chromospheric origin of the unidentified mid-IR source. Comparison with the X1.0 flare SOL2022-10-02T20:25 indicates that the total amount of high-energy electron (>60 keV) flux density is a key factor in determining the total brightening area and the maximum intensity enhancement in HMI/Icemissions.more » « less
-
Context.High-resolution magnetograms are crucial for studying solar flare dynamics because they enable the precise tracking of magnetic structures and rapid field changes. The Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory (SDO/HMI) has been an essential provider of vector magnetograms. However, the spatial resolution of the HMI magnetograms is limited and hence is not able to capture the fine structures that are essential for understanding flare precursors. The Near InfraRed Imaging Spectropolarimeter on the 1.6 m Goode Solar Telescope (GST/NIRIS) at Big Bear Solar Observatory (BBSO) provides a better spatial resolution and is therefore more suitable to track the fine magnetic features and their connection to flare precursors. Aims.We propose DeepHMI, a machine-learning method for solar image super-resolution, to enhance the transverse and line-of-sight magnetograms of solar active regions (ARs) collected by SDO/HMI to better capture the fine-scale magnetic structures that are crucial for understanding solar flare dynamics. The enhanced HMI magnetograms can also be used to study spicules, sunspot light bridges and magnetic outbreaks, for which high-resolution data are essential. Methods.DeepHMI employs a conditional diffusion model that is trained using ground-truth images obtained by an inversion analysis of Stokes measurements collected by GST/NIRIS. Results.Our experiments show that DeepHMI performs better than the commonly used bicubic interpolation method in terms of four evaluation metrics. In addition, we demonstrate the ability of DeepHMI through a case study of the enhancement of SDO/HMI transverse and line-of-sight magnetograms of AR 12371 to GST/NIRIS data.more » « less
An official website of the United States government
