skip to main content


Title: Principled Data-Driven Decision Support for Cyber-Forensic Investigations
In the wake of a cybersecurity incident, it is crucial to promptly discover how the threat actors breached security in order to assess the impact of the incident and to develop and deploy countermeasures that can protect against further attacks. To this end, defenders can launch a cyber-forensic investigation, which discovers the techniques that the threat actors used in the incident. A fundamental challenge in such an investigation is prioritizing the investigation of particular techniques since the investigation of each technique requires time and effort, but forensic analysts cannot know which ones were actually used before investigating them. To ensure prompt discovery, it is imperative to provide decision support that can help forensic analysts with this prioritization. A recent study demonstrated that data-driven decision support, based on a dataset of prior incidents, can provide state-of-the-art prioritization. However, this data-driven approach, called DISCLOSE, is based on a heuristic that utilizes only a subset of the available information and does not approximate optimal decisions. To improve upon this heuristic, we introduce a principled approach for data-driven decision support for cyber-forensic investigations. We formulate the decision-support problem using a Markov decision process, whose states represent the states of a forensic investigation. To solve the decision problem, we propose a Monte Carlo tree search based method, which relies on a k-NN regression over prior incidents to estimate state-transition probabilities. We evaluate our proposed approach on multiple versions of the MITRE ATT&CK dataset, which is a knowledge base of adversarial techniques and tactics based on real-world cyber incidents, and demonstrate that our approach outperforms DISCLOSE in terms of techniques discovered per effort spent.  more » « less
Award ID(s):
1850510
NSF-PAR ID:
10429966
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the AAAI Conference on Artificial Intelligence
Volume:
37
Issue:
4
ISSN:
2159-5399
Page Range / eLocation ID:
5010 to 5017
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Large enterprises are increasingly relying on threat detection softwares (e.g., Intrusion Detection Systems) to allow them to spot suspicious activities. These softwares generate alerts which must be investigated by cyber analysts to figure out if they are true attacks. Unfortunately, in practice, there are more alerts than cyber analysts can properly investigate. This leads to a “threat alert fatigue” or information overload problem where cyber analysts miss true attack alerts in the noise of false alarms. In this paper, we present NoDoze to combat this challenge using contextual and historical information of generated threat alert in an enterprise. NoDoze first generates a causal dependency graph of an alert event. Then, it assigns an anomaly score to each event in the dependency graph based on the frequency with which related events have happened before in the enterprise. NoDoze then propagates those scores along the edges of the graph using a novel network diffusion algorithm and generates a subgraph with an aggregate anomaly score which is used to triage alerts. Evaluation on our dataset of 364 threat alerts shows that NoDoze decreases the volume of false alarms by 86%, saving more than 90 hours of analysts’ time, which was required to investigate those false alarms. Furthermore, NoDoze generated dependency graphs of true alerts are 2 orders of magnitude smaller than those generated by traditional tools without sacrificing the vital information needed for the investigation. Our system has a low average runtime overhead and can be deployed with any threat detection software. 
    more » « less
  2. Cybercrime scene reconstruction that aims to reconstruct a previous execution of the cyber attack delivery process is an important capability for cyber forensics (e.g., post mortem analysis of the cyber attack executions). Unfortunately, existing techniques such as log-based forensics or record-and-replay techniques are not suitable to handle complex and long-running modern applications for cybercrime scene reconstruction and post mortem forensic analysis. Specifically, log-based cyber forensics techniques often suffer from a lack of inspection capability and do not provide details of how the attack unfolded. Record-and-replay techniques impose significant runtime overhead, often require significant modifications on end-user systems, and demand to replay the entire recorded execution from the beginning. In this paper, we propose C2SR, a novel technique that can reconstruct an attack delivery chain (i.e., cybercrime scene) for post-mortem forensic analysis. It provides a highly desired capability: interactable partial execution reconstruction. In particular, it reproduces a partial execution of interest from a large execution trace of a long-running program. The reconstructed execution is also interactable, allowing forensic analysts to leverage debugging and analysis tools that did not exist on the recorded machine. The key intuition behind C2SR is partitioning an execution trace by resources and reproducing resource accesses that are consistent with the original execution. It tolerates user interactions required for inspections that do not cause inconsistent resource accesses. Our evaluation results on 26 real-world programs show that C2SR has low runtime overhead (less than 5.47%) and acceptable space overhead. We also demonstrate with four realistic attack scenarios that C2SR successfully reconstructs partial executions of long-running applications such as web browsers, and it can remarkably reduce the user’s efforts to understand the incident. 
    more » « less
  3. The imperative factors of cybersecurity within institutions have become prevalent due to the rise of cyber-attacks. Cybercriminals strategically choose their targets and develop several different techniques and tactics that are used to exploit vulnerabilities throughout an entire institution. With the thorough analysis practices being used in recent policy and regulation of cyber incident reports, it has been claimed that data breaches have increased at alarming rates rapidly. Thus, capturing the trends of cyber-attacks strategies, exploited vulnerabilities, and reoccurring patterns as insight to better cybersecurity. This paper seeks to discover the possible threats that influence the relationship between the human component and cybersecurity posture. Along with this, we use the Vocabulary for Event Recording and Incident Sharing (VERIS) database to analyze previous cyber incidents to advance risk management that will benefit the institutional level of cybersecurity. We elaborate on the rising concerns of external versus internal factors that potentially put institutions at risk for exploiting vulnerabilities and conducting an exploratory data analysis that articulates the understanding of detrimental monetary and data loss in recent cyber incidents. The human component of this research attributes to the perceptive of the most common cause within cyber incidents, human error. With these concerns on the rise, we found contributing factors with the use of a risk-based approach and thorough analysis of databases, which will be used to improve the practical consensus of cybersecurity. Our findings can be of use to all institutions in search of useful insight to better their risk-management planning skills and failing elements of their cybersecurity. 
    more » « less
  4. Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity. 
    more » « less
  5. To manage limited resources available to protect against cybersecurity threats, organizations must use risk management approach to prioritize investments in protection capabilities. Currently, there is no commonly accepted methodology for cybersecurity professionals that considers one of the key elements of risk function - threat landscape - to identify gaps (blinds spots) where cybersecurity protections do not exist and where future investments are needed. This paper discusses a new, threat-based approach for evaluation of cybersecurity architectures that allows organizations to look at their cybersecurity protections from the standpoint of an adversary. The approach is based on a methodology developed by the Department of Defense and further expanded by the Department of Homeland Security. The threat-based approach uses a cyber threat framework to enumerate all threat actions previously observed in the wild and scores protections (cybersecurity architectural capabilities) against each threat action for their ability to: a) detect; b) protect against; and c) help in recovery from the threat action. The answers form a matrix called capability coverage map - a visual representation of protections coverage, gaps, and overlaps against threats. To allow for prioritization, threat actions can be organized in a threat heat map - a visual representation of threat actions' prevalence and maneuverability that can be overlaid on top of a coverage map. The paper demonstrates a new threat modeling methodology and recommends future research to establish a decision-making framework for designing cybersecurity architectures (capability portfolios) that maximize protections (described as coverage in terms of protect, detect, and respond functions) against known cybersecurity threats. 
    more » « less