The unique chemical and physical properties of graphene and its derivatives (graphene oxide, heteroatom‐doped graphene, and functionalized graphene) have stimulated tremendous efforts and made significant progress in fuel cell applications. This review focuses on the latest advances in the use of graphene‐based materials in electrodes, electrolytes, and bipolar plates for fuel cells. The understanding of structure‐activity relationships of metal‐free heteroatom‐doped graphene and graphene‐supported catalysts was highlighted. The performances and advantages of graphene‐based materials in membranes and bipolar plates were summarized. We also outlined the challenges and perspectives in using graphene‐based materials for fuel cell applications.
- Award ID(s):
- 1809805
- NSF-PAR ID:
- 10430079
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 35
- Issue:
- 40
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 405003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Nitrogen (N) doping is one of the most effective approaches to tailor the chemical and physical properties of graphene. By the interplay between N dopants and 3D curvature of graphene lattices, N‐doped 3D graphene displays superior performance in electrocatalysis and solar‐energy harvesting for energy and environmental applications. However, the electrical transport properties and the electronic states, which are the key factors to understand the origins of the N‐doping effect in 3D graphene, are still missing. The electronic properties of N‐doped 3D graphene are systematically investigated by an electric‐double‐layer transistor method. It is demonstrated that Urbach‐tail‐like localized states are located around the neutral point of N‐doped 3D graphene with the background metallic transport channels. The dual nature of electronic states, generated by the synergistic effect of N dopants and 3D curvature of graphene, can be the electronic origin of the high electrocatalysis, enhanced molecular adsorption, and light absorption of N‐doped 3D graphene.
-
Abstract Lateral p–n junctions take the unique advantages of 2D materials, such as graphene, to enable single‐atomic layer microelectronics. A major challenge in fabrication of the lateral p–n junctions is in the control of electronic properties on a 2D atomic sheet with nanometer precision. Herein, a facile approach that employs decoration of molecular anions of bis‐(trifluoromethylsulfonyl)‐imide (TFSI) to generate p‐doping on the otherwise n‐doped graphene by positively polarized surface electric dipoles (pointing toward the surface) formed on the surface oxygen‐deficient layer “intrinsic” to an oxide ferroelectric back gate is reported. The characteristic double conductance minima
V Dirac−andV Dirac+ illustrated in the obtained lateral graphene p–n junctions can be tuned in the range of −1 to 0 V and 0 to +1 V, respectively, by controlling the TFSI anions and surface dipoles quantitatively. The unique advantage of this approach is in adoption of polarity‐controlled molecular ion attachment on graphene, which could be further developed for various lateral electronics on 2D materials. -
Despite the various strategies for achieving metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO 2 RR), the synthesis–structure–performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N 3 , while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N 2 . Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp 2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N 3 sites exhibit a superior CO 2 RR performance compared to that with Ni-N 2 and Ni-N 4 ones.more » « less