skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Random Interpolating Sequences in Dirichlet Spaces
Abstract We discuss random interpolating sequences in weighted Dirichlet spaces $${{\mathcal{D}}}_\alpha $$, $$0\leq \alpha \leq 1$$, when the radii of the sequence points are fixed a priori and the arguments are uniformly distributed. Although conditions for deterministic interpolation in these spaces depend on capacities, which are very hard to estimate in general, we show that random interpolation is driven by surprisingly simple distribution conditions. As a consequence, we obtain a breakpoint at $$\alpha =1/2$$ in the behavior of these random interpolating sequences showing more precisely that almost sure interpolating sequences for $${{\mathcal{D}}}_\alpha $$ are exactly the almost sure separated sequences when $$0\le \alpha <1/2$$ (which includes the Hardy space $$H^2={{\mathcal{D}}}_0$$), and they are exactly the almost sure zero sequences for $${{\mathcal{D}}}_\alpha $$ when $$1/2 \leq \alpha \le 1$$ (which includes the classical Dirichlet space $${{\mathcal{D}}}={{\mathcal{D}}}_1$$).  more » « less
Award ID(s):
1800057
PAR ID:
10430219
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2022
Issue:
17
ISSN:
1073-7928
Page Range / eLocation ID:
13629 to 13658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study almost surely separating and interpolating properties of random sequences in the polydisc and the unit ball. In the unit ball, we obtain the 0–1 Komolgorov law for a sequence to be interpolating almost surely for all the Besov–Sobolev spaces $$B_{2}^{\sigma }\left( \mathbb {B}_{d}\right) $$ B 2 σ B d , in the range $$0 < \sigma \le 1 / 2$$ 0 < σ ≤ 1 / 2 . For those spaces, such interpolating sequences coincide with interpolating sequences for their multiplier algebras, thanks to the Pick property. This is not the case for the Hardy space $$\mathrm {H}^2(\mathbb {D}^d)$$ H 2 ( D d ) and its multiplier algebra $$\mathrm {H}^\infty (\mathbb {D}^d)$$ H ∞ ( D d ) : in the polydisc, we obtain a sufficient and a necessary condition for a sequence to be $$\mathrm {H}^\infty (\mathbb {D}^d)$$ H ∞ ( D d ) -interpolating almost surely. Those two conditions do not coincide, due to the fact that the deterministic starting point is less descriptive of interpolating sequences than its counterpart for the unit ball. On the other hand, we give the $$0-1$$ 0 - 1 law for random interpolating sequences for $$\mathrm {H}^2(\mathbb {D}^d)$$ H 2 ( D d ) . 
    more » « less
  2. In this paper, we study the mixed Littlewood conjecture with pseudo-absolute values. For any pseudo-absolute-value sequence $${\mathcal{D}}$$ , we obtain a sharp criterion such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ for a certain one-parameter family of $$\unicode[STIX]{x1D713}$$ . Also, under a minor condition on pseudo-absolute-value sequences $${\mathcal{D}}_{1},{\mathcal{D}}_{2},\ldots ,{\mathcal{D}}_{k}$$ , we obtain a sharp criterion on a general sequence $$\unicode[STIX]{x1D713}(n)$$ such that for almost every $$\unicode[STIX]{x1D6FC}$$ the inequality $$\begin{eqnarray}|n|_{{\mathcal{D}}_{1}}|n|_{{\mathcal{D}}_{2}}\cdots |n|_{{\mathcal{D}}_{k}}|n\unicode[STIX]{x1D6FC}-p|\leq \unicode[STIX]{x1D713}(n)\end{eqnarray}$$ has infinitely many coprime solutions $$(n,p)\in \mathbb{N}\times \mathbb{Z}$$ . 
    more » « less
  3. We study the large-scale behavior of Newton-Sobolev functions on complete, connected, proper, separable metric measure spaces equipped with a Borel measure μ with μ(X) = ∞ and 0 < μ(B(x, r)) < ∞ for all x ∈ X and r ∈ (0, ∞). Our objective is to understand the relationship between the Dirichlet space D^(1,p)(X), defined using upper gradients, and the Newton-Sobolev space N^(1,p)(X)+ℝ, for 1 ≤ p < ∞. We show that when X is of uniformly locally p-controlled geometry, these two spaces do not coincide under a wide variety of geometric and potential theoretic conditions. We also show that when the metric measure space is the standard hyperbolic space ℍⁿ with n ≥ 2, these two spaces coincide precisely when 1 ≤ p ≤ n-1. We also provide additional characterizations of when a function in D^(1,p)(X) is in N^(1,p)(X)+ℝ in the case that the two spaces do not coincide. 
    more » « less
  4. Abstract We consider Lane–Emden ground states with polytropic index 0 ≤ q - 1 ≤ 1 {0\leq q-1\leq 1} , that is, minimizers of the Dirichlet integral among L q {L^{q}} -normalized functions.Our main result is a sharp lower bound on the L 2 {L^{2}} -norm of the normal derivative in terms of the energy, which implies a corresponding isoperimetric inequality.Our bound holds for arbitrary bounded open Lipschitz sets Ω ⊂ ℝ d {\Omega\subset\mathbb{R}^{d}} , without assuming convexity. 
    more » « less
  5. null (Ed.)
    Multiplicity code decoders are based on Hermite polynomial interpolation with error correction. In order to have a unique Hermite interpolant one assumes that the field of scalars has characteristic 0 or >= k+1, where k is the maximum order of the derivatives in the list of values of the polynomial and its derivatives which are interpolated. For scalar fields of characteristic k+1, the minimum number of values for interpolating a polynomial of degree <= D is D+1+2E(k+1) when <= E of the values are erroneous. Here we give an error-correcting Hermite interpolation algorithm that can tolerate more errors, assuming that the characteristic of the scalar field is either 0 or >= D+1. Our algorithm requires (k+1)D + 1 - (k+1)k/2 + 2E values. As an example, we consider k = 2. If the error ratio (number of errors)/(number of evaluations) <= 0.16, our new algorithm requires ceiling( (4+7/17) D - (1+8 /17) ) values, while multiplicity decoding requires 25D+25 values. If the error ratio is <= 0.2, our algorithm requires 5D-2 evaluations over characteristic 0 or >= D+1, while multiplicity decoding for an error ratio 0.2 over fields of characteristic 3 is not possible for D >= 3. Our algorithm is based on Reed-Solomon interpolation without multiplicities, which becomes possible for Hermite interpolation because of the high redundancy necessary for error-correction. 
    more » « less