skip to main content


This content will become publicly available on December 1, 2024

Title: Weather anomalies more important than climate means in driving insect phenology
Abstract Studies of long-term trends in phenology often rely on climatic averages or accumulated heat, overlooking climate variability. Here we test the hypothesis that unusual weather conditions are critical in driving adult insect phenology. First, we generate phenological estimates for Lepidoptera (moths and butterflies) across the Eastern USA, and over a 70 year period, using natural history collections data. Next, we assemble a set of predictors, including the number of unusually warm and cold days prior to, and during, the adult flight period. We then use phylogenetically informed linear mixed effects models to evaluate effects of unusual weather events, climate context, species traits, and their interactions on flight onset, offset and duration. We find increasing numbers of both warm and cold days were strong effects, dramatically increasing flight duration. This strong effect on duration is likely driven by differential onset and termination dynamics. For flight onset, impact of unusual climate conditions is dependent on climatic context, but for flight cessation, more unusually cold days always lead to later termination particularly for multivoltine species. These results show that understanding phenological responses under global change must account for unusual weather events, especially given they are predicted to increase in frequency and severity.  more » « less
Award ID(s):
2033263 1703048
NSF-PAR ID:
10430505
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Communications Biology
Volume:
6
Issue:
1
ISSN:
2399-3642
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Across taxa, the timing of life‐history events (phenology) is changing in response to warming temperatures. However, little is known about drivers of variation in phenological trends among species.

    We analysed 168 years of museum specimen and sighting data to evaluate the patterns of phenological change in 70 species of solitary bees that varied in three ecological traits: diet breadth (generalist or specialist), seasonality (spring, summer or fall) and nesting location (above‐ground or below‐ground). We estimated changes in onset, median, end and duration of each bee species' annual activity (flight duration) using quantile regression.

    To determine whether ecological traits could explain phenological trends, we compared average trends across species groups that differed in a single trait. We expected that specialist bees would be constrained by their host plants' phenology and would show weaker phenological change than generalist species. We expected phenological advances in spring and delays in summer and fall. Lastly, we expected stronger shifts in above‐ground versus below‐ground nesters.

    Across all species, solitary bees have advanced their phenology by 0.43 days/decade. Since 1970, this advancement has increased fourfold to 1.62 days/decade. Solitary bees have also lengthened their flight period by 0.44 days/decade. Seasonality and nesting location explained variation in trends among species. Spring‐ and summer‐active bees tended to advance their phenology, whereas fall‐active bees tended to delay. Above‐ground nesting species experienced stronger advances than below‐ground nesting bees in spring; however, the opposite was true in summer. Diet breadth was not associated with patterns of phenological change.

    Our study has two key implications. First, an increasing activity period of bees across the flight season means that bee communities will potentially provide pollination services for a longer period of time during the year. And, since phenological trends in solitary bees can be explained by some ecological traits, our study provides insight into mechanisms underpinning population viability of insect pollinators in a changing world.

     
    more » « less
  2. Abstract Aim

    Phenology, the temporal response of a population to its climate, is a crucial behavioural trait shared across life on earth. How species adapt their phenologies to climate change is poorly understood but critical in understanding how species will respond to future change. We use a group of flies (Rhaphiomidas) endemic to the North American deserts to understand how species adapt to changing climatic conditions. Here, we explore a novel approach for taxa with constrained phenologies aimed to accurately model their environmental niche and relate this to phenological and morphological adaptations in a phylogenetic context.

    Taxon

    Insecta, Diptera, Mydidae,Rhaphiomidas.

    Location

    North America, Mojave, Sonoran and Chihuahuan Deserts.

    Methods

    We gathered geographical and phenological occurrence data for the entire genusRhaphiomidas, and, estimated a time calibrated phylogeny. We compared Daymet derived temperature values for a species adult occurrence period (phenology) with those derived from WorldClim data that is partitioned by month or quarter to examine what effect using more precise data has on capturing a species’ environmental niche. We then examined to what extent phylogenetic signal in phenological traits, climate tolerance and morphology can inform us about how species adapt to different environmental regimes.

    Results

    We found that the Bioclim temperature data, which are averages across monthly intervals, poorly represent the climate windows to which adult flies are actually adapted. Using temporally relevant climate data, we show that many species use a combination of morphological and phenological changes to adapt to different climate regimes. There are also instances where species changed only phenology to track a climate type or only morphology to adapt to different environments.

    Main Conclusions

    Without using a fine‐scale phenological data approach, identifying environmental adaptations could be misleading because the data do not represent the conditions the animals are actually experiencing. We find that fine‐scale phenological niche models are needed when assessing taxa that have a discrete phenological window that is key to their survival, accurately linking environment to morphology and phenology. Using this approach, we show thatRhaphiomidasuse a combination of niche tracking and adaptation to persist in new niches. Modelling the effect of phenology on such species’ niches will be critical for better predictions of how these species might respond to future climate change.

     
    more » « less
  3. Abstract

    Climate change is leading to phenological shifts across a wide range of species globally. Polar oceans are hotspots of rapid climate change where sea ice dynamics structure ecosystems and organismal life cycles are attuned to ice seasonality. To anticipate climate change impacts on populations and ecosystem services, it is critical to understand ecosystem phenology to determine species activity patterns, optimal environmental windows for processes like reproduction, and the ramifications of ecological mismatches. Since 1991, the Palmer Antarctica Long‐Term Ecological Research (LTER) program has monitored seasonal dynamics near Palmer Station. Here, we review the species that occupy this region as year‐round residents, seasonal breeders, or periodic visitors. We show that sea ice retreat and increasing photoperiod in the spring trigger a sequence of events from mid‐November to mid‐February, including Adélie penguin clutch initiation, snow melt, calm conditions (low winds and warm air/sea temperature), phytoplankton blooms, shallow mixed layer depths, particulate organic carbon flux, peak humpback whale abundances, nutrient drawdown, and bacterial accumulation. Subsequently, from May to June, snow accumulates, zooplankton indicator species appear, and sea ice advances. The standard deviation in the timing of most events ranged from ~20 to 45 days, which was striking compared with Adélie penguin clutch initiation that varied <1 week. In general, during late sea ice retreat years, events happened later (~5 to >30 days) than mean dates and the variability in timing was low (<20%) compared with early ice retreat years. Statistical models showed the timing of some events were informative predictors (but not sole drivers) of other events. From an Adélie penguin perspective, earlier sea ice retreat and shifts in the timing of suitable conditions or prey characteristics could lead to mismatches, or asynchronies, that ultimately influence chick survival via their mass at fledging. However, more work is needed to understand how phenological shifts affect chick thermoregulatory costs and the abundance, availability, and energy content of key prey species, which support chick growth and survival. While we did not detect many long‐term phenological trends, we expect that when sea ice trends become significant within our LTER time series, phenological trends and negative effects from ecological mismatches will follow.

     
    more » « less
  4. Abstract

    Climate variation has been linked to historical and predicted future distributions and dynamics of wildlife populations. However, demographic mechanisms underlying these changes remain poorly understood. Here, we assessed variation and trends in climate (annual snowfall and spring temperature anomalies) and avian demographic variables from mist‐netting data (breeding phenology and productivity) at six sites along an elevation gradient spanning the montane zone of Yosemite National Park between 1993 and 2017. We implemented multi‐species hierarchical models to relate demographic responses to elevation and climate covariates. Annual variation in climate and avian demographic variables was high. Snowfall declined (10 mm/year at the highest site, 2 mm at the lowest site), while spring temperature increased (0.045°C/year) over the study period. Breeding phenology (mean first capture date of juvenile birds) advanced by 0.2 day/year (5 days); and productivity (probability of capturing a juvenile bird) increased by 0.8%/year. Breeding phenology was 12 days earlier at the lowest compared to highest site, 18 days earlier in years with lowest compared to highest snowfall anomalies, and 6 d earlier in relatively warm springs (after controlling for snowfall effects). Productivity was positively related to elevation. However, elevation–productivity responses varied among species; species with higher productivity at higher compared to lower elevations tended to be species with documented range retractions during the past century. Productivity tended to be negatively related to snowfall and was positively related to spring temperature. Overall, our results suggest that birds have tracked the variable climatic conditions in this system and have benefited from a trend toward warmer, drier springs. However, we caution that continued warming and multi‐year drought or extreme weather years may alter these relationships in the future. Multi‐species demographic modeling, such as implemented here, can provide an important tool for guiding conservation of species assemblages under global change.

     
    more » « less
  5. Abstract

    Insect phenological lability is key for determining which species will adapt under environmental change. However, little is known about when adult insect activity terminates and overall activity duration. We used community‐science and museum specimen data to investigate the effects of climate and urbanisation on timing of adult insect activity for 101 species varying in life history traits. We found detritivores and species with aquatic larval stages extend activity periods most rapidly in response to increasing regional temperature. Conversely, species with subterranean larval stages have relatively constant durations regardless of regional temperature. Species extended their period of adult activity similarly in warmer conditions regardless of voltinism classification. Longer adult durations may represent a general response to warming, but voltinism data in subtropical environments are likely underreported. This effort provides a framework to address the drivers of adult insect phenology at continental scales and a basis for predicting species response to environmental change.

     
    more » « less