Abstract Scenarios that limit global warming to below 2 °C by 2100 assume significant land-use change to support large-scale carbon dioxide (CO2) removal from the atmosphere by afforestation/reforestation, avoided deforestation, and Biomass Energy with Carbon Capture and Storage (BECCS). The more ambitious mitigation scenarios require even greater land area for mitigation and/or earlier adoption of CO2removal strategies. Here we show that additional land-use change to meet a 1.5 °C climate change target could result in net losses of carbon from the land. The effectiveness of BECCS strongly depends on several assumptions related to the choice of biomass, the fate of initial above ground biomass, and the fossil-fuel emissions offset in the energy system. Depending on these factors, carbon removed from the atmosphere through BECCS could easily be offset by losses due to land-use change. If BECCS involves replacing high-carbon content ecosystems with crops, then forest-based mitigation could be more efficient for atmospheric CO2removal than BECCS.
more »
« less
Biomass yield potential on U.S. marginal land and its contribution to reach net‐zero emission
Abstract Bioenergy with carbon capture and geological storage (BECCS) is considered one of the top options for both offsetting CO2emissions and removing atmospheric CO2. BECCS requires using limited land resources efficiently while ensuring minimal adverse impacts on the delicate food‐energy‐water nexus. Perennial C4 biomass crops are productive on marginal land under low‐input conditions avoiding conflict with food and feed crops. The eastern half of the contiguous U.S. contains a large amount of marginal land, which is not economically viable for food production and liable to wind and water erosion under annual cultivation. However, this land is suitable for geological CO2storage and perennial crop growth. Given the climate variation across the region, three perennials are major contenders for planting. The yield potential and stability of Miscanthus, switchgrass, and energycane across the region were compared to select which would perform best under the recent (2000–2014) and future (2036–2050) climates. Miscanthus performed best in the Midwest, switchgrass in the Northeast and energycane in the Southeast. On average, Miscanthus yield decreased from present 19.1 t/ha to future 16.8 t/ha; switchgrass yield from 3.5 to 2.4 t/ha; and energycane yield increased from 14 to 15 t/ha. Future yield stability decreased in the region with higher predicted drought stress. Combined, these crops could produce 0.6–0.62 billion tonnes biomass per year for the present and future. Using the biomass for power generation with CCS would capture 703–726 million tonnes of atmospheric CO2per year, which would offset about 11% of current total U.S. emission. Further, this biomass approximates the net primary CO2productivity of two times the current baseline productivity of existing vegetation, suggesting a huge potential for BECCS. Beyond BECCS, C4 perennial grasses could also increase soil carbon and provide biomass for emerging industries developing replacements for non‐renewable products including plastics and building materials.
more »
« less
- Award ID(s):
- 1903249
- PAR ID:
- 10487261
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- GCB Bioenergy
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 1757-1693
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Expanding biofuel production is expected to accelerate the conversion of unmanaged marginal lands to meet biomass feedstock needs. Greenhouse gas production during conversion jeopardizes the ensuing climate benefits, but most research to date has focused only on conversion to annual crops and only following tillage. Here we report the global warming impact of converting USDA Conservation Reserve Program (CRP) grasslands to three types of bioenergy crops using no‐till (NT) vs. conventional tillage (CT). We established replicated NT and CT plots in three CRP fields planted to continuous corn, switchgrass, or restored prairie. For the 2 yr following an initial soybean year in all fields, we found that, on average, NT conversion reduced nitrous oxide (N2O) emissions by 50% and CO2emissions by 20% compared with CT conversion. Differences were higher in Year 1 than in Year 2 in the continuous corn field, and in the two perennial systems the differences disappeared after Year 1. In all fields net CO2emissions (as measured by eddy covariance) were positive for the first 2 yr following CT establishment, but following NT establishment net CO2emissions were close to zero or negative, indicating net C sequestration. Overall, NT improved the global warming impact of biofuel crop establishment following CRP conversion by over 20‐fold compared with CT (−6.01 Mg CO2e ha−1 yr−1for NT vs. −0.25 Mg CO2e ha−1 yr−1for CT, on average). We also found that Intergovernmental Panel on Climate Change estimates of N2O emissions (as measured by static chambers) greatly underestimated actual emissions for converted fields regardless of tillage. Policies should encourage adoption of NT for converting marginal grasslands to perennial bioenergy crops to reduce C debt and maximize climate benefits.more » « less
-
Abstract Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatumL.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.more » « less
-
Without fertilization, harvest of perennial bioenergy cropping systems diminishes soil nutrient stocks, yet the time course of nutrient drawdown has not often been investigated. We analyzed phosphorus (P) inputs (fertilization and atmospheric deposition) and outputs (harvest and leaching losses) over seven years in three representative biomass crops—switchgrass (Panicum virgatum L.), miscanthus (Miscanthus X giganteus) and hybrid poplar trees (Populus nigra X P. maximowiczii) – as well as in no-till corn (maize; Zea mays L.) for comparison, all planted on former cropland in SW Michigan, USA. Only corn received P fertilizer. Corn (grain and stover), switchgrass, and miscanthus were harvested annually, while poplar was harvested after six years. Soil test P (STP; Bray-1 method) was measured in the upper 25 cm of soil annually. Harvest P removal was calculated from tissue P concentration and harvest yield (or annual woody biomass accrual in poplar). Leaching was estimated as total dissolved P concentration in soil solutions sampled beneath the rooting depth (1.25 m), combined with hydrological modeling. Fertilization and harvest were by far the dominant P budget terms for corn, and harvest P removal dominated the P budgets in switchgrass, miscanthus, and poplar, while atmospheric deposition and leaching losses were comparatively insignificant. Because of significant P removal by harvest, the P balances of switchgrass, miscanthus, and poplar were negative and corresponded with decreasing STP, whereas P fertilization compensated for the harvest P removal in corn, resulting in a positive P balance. Results indicate that perennial crop harvest without P fertilization removed legacy P from soils, and continued harvest will soon draw P down to limiting levels, even in soils once heavily P-fertilized. Widespread cultivation of bioenergy crops may therefore alter P balances in agricultural landscapes, eventually requiring P fertilization, which could be supplied by P recovery from harvested biomass.more » « less
-
Annual U.S. production of bioethanol, primarily produced from corn starch in the U.S. Midwest, rose to 57 billion liters in 2021, which fulfilled the required conventional biofuel target set forth by the Energy Independence and Security Act (EISA) of 2007. At the same time, the U.S. fell short of the cellulosic or advanced biofuel target of 79 billion liters. The growth of bioenergy grasses (e.g., Miscanthus and switchgrass) across the Central and Eastern U.S. has the potential to feed enhanced cellulosic bioethanol production and, if successful, increase renewable fuel volumes. However, water consumption and climate change and its extremes are critical concerns in corn and bioenergy grass productivity. These concerns are compounded by the demands on potentially productive land areas and water devoted to producing biofuels. This is a fundamental Food-Energy-Water System (FEWS) nexus challenge. We apply a computational framework to estimate potential bioenergy yield and conversion to bioethanol yield across the U.S., based on crop field studies and conversion technology analysis for three crops—corn, Miscanthus, and two cultivars of switchgrass (Cave-in-Rock and Alamo). The current study identifies regions where each crop has its highest yield across the Center and Eastern U.S. While growing bioenergy grasses requires more water than corn, one advantage they have as a source of bioethanol is that they control nitrogen leaching relative to corn. Bioenergy grasses also maintain steadily high productivity under extreme climate conditions, such as drought and heatwaves in the year 2012 over the U.S. Midwest, because the perennial growing season and the deeper and denser roots can ameliorate the soil water stress. While the potential ethanol yield could be enhanced using energy grasses, their practical success in becoming a potential source of ethanol yield remains limited by socio-economic and operational constraints and concerns regarding competition with food production.more » « less