skip to main content


This content will become publicly available on July 1, 2024

Title: Structural and Thermodynamic Properties of Magnesium-Rich Liquids at Ultrahigh Pressure
We explore the structural properties of Mg, MgO, and MgSiO3 liquids from ab initio computer simulations at conditions that are relevant for the interiors of giant planets, stars, shock compression measurements, and inertial confinement fusion experiments. Using path-integral Monte Carlo and density functional theory molecular dynamics, we derive the equation of state of magnesium-rich liquids in the regime of condensed and warm dense matter, with densities ranging from 0.32 to 86.11 g cm−3 and temperatures from 20,000 K to 5 × 108 K. We study the electronic structure of magnesium as a function of density and temperature and the correlations of the atomic motion, finding an unexpected local maximum in the pair correlation functions that emerges at high densities which decreases the coordination number of elemental magnesium and reveals a higher packing. This phenomenon is not observed in other magnesium liquids, which maintain a rather constant coordination number.  more » « less
Award ID(s):
2020249
NSF-PAR ID:
10431055
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Minerals
Volume:
13
Issue:
7
ISSN:
2075-163X
Page Range / eLocation ID:
885
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Information resulting from a comprehensive investigation into the intrinsic strengths of hydrated divalent magnesium clusters is useful for elucidating the role of aqueous solvents on the Mg2+ ion, which can be related to those in bulk aqueous solution. However, the intrinsic Mg–O and intermolecular hydrogen bond interactions of hydrated magnesium ion clusters have yet to be quantitatively measured. In this work, we investigated a set of 17 hydrated divalent magnesium clusters by means of local vibrational mode force constants calculated at the ωB97X-D/6-311++G(d,p) level of theory, where the nature of the ion–solvent and solvent–solvent interactions were interpreted from topological electron density analysis and natural population analysis. We found the intrinsic strength of inner shell Mg–O interactions for [Mg(H2O)n]2+ (n = 1–6) clusters to relate to the electron density at the bond critical point in Mg–O bonds. From the application of a secondary hydration shell to [Mg(H2O)n]2+ (n = 5–6) clusters, stronger Mg–O interactions were observed to correspond to larger instances of charge transfer between the lp(O) orbitals of the inner hydration shell and the unfilled valence shell of Mg. As the charge transfer between water molecules of the first and second solvent shell increased, so did the strength of their intermolecular hydrogen bonds (HBs). Cumulative local vibrational mode force constants of explicitly solvated Mg2+, having an outer hydration shell, reveal a CN of 5, rather than a CN of 6, to yield slightly more stable configurations in some instances. However, the cumulative local mode stretching force constants of implicitly solvated Mg2+ show the six-coordinated cluster to be the most stable. These results show that such intrinsic bond strength measures for Mg–O and HBs offer an effective way for determining the coordination number of hydrated magnesium ion clusters. 
    more » « less
  2. The utilization of metallic anodes holds promise for unlocking high gravimetric and volumetric energy densities and is pivotal to the adoption of ‘beyond Li’ battery chemistries. Much of the promise of magnesium batteries stems from claims regarding their lower predilection for dendrite growth. Whilst considerable effort has been invested in the design of novel electrolytes and cathodes, detailed studies of Mg plating are scarce. Using galvanostatic electrodeposition of metallic Mg from Grignard reagents in symmetric Mg–Mg cells, we establish a phase map characterized by disparate morphologies spanning the range from fractal aggregates of 2D nanoplatelets to highly anisotropic dendrites with singular growth fronts and nanowires entangled in the form of mats. The effects of electrolyte concentration, applied current density, and coordinating ligands have been explored. The study demonstrates a complex range of electrodeposited morphologies including canonical dendrites with shear moduli conducive to penetration through typical polymeric separators. We further demonstrate a strategy for mitigating Mg dendrite formation based on the addition of molecular Lewis bases that promote nanowire growth through selective surface coordination. 
    more » « less
  3. Mg 2 GeO 4 is important as an analog for the ultrahigh-pressure behavior of Mg 2 SiO 4 , a major component of planetary interiors. In this study, we have investigated magnesium germanate to 275 GPa and over 2,000 K using a laser-heated diamond anvil cell combined with in situ synchrotron X-ray diffraction and density functional theory (DFT) computations. The experimental results are consistent with the formation of a phase with disordered Mg and Ge, in which germanium adopts eightfold coordination with oxygen: the cubic, Th 3 P 4 -type structure. DFT computations suggest partial Mg-Ge order, resulting in a tetragonal I 4 ¯ 2 d structure indistinguishable from I 4 ¯ 3 d Th 3 P 4 in our experiments. If applicable to silicates, the formation of this highly coordinated and intrinsically disordered phase may have important implications for the interior mineralogy of large, rocky extrasolar planets. 
    more » « less
  4. Abstract

    The structure of liquid lithium pyroborate, Li4B2O5(J= Li/B = 2), has been measured over a wide temperature range by high‐energy X‐ray diffraction, and compared to that of its glass and borate liquids of other compositions. The results indicate a gradual increase in tetrahedral boron fraction from 3(1)% to 6(1)% during cooling fromT= 1271(15) to 721(8) K, consistent with the largerN4 = 10(1)% found for the glass, and literature11B nuclear magnetic resonance measurements. van't Hoff analysis based on a simple boron isomerization reaction BØ3O2⇌ BØO22–yields ΔH= 13(1) kJ mol–1and ΔS= 40(1) J mol–1 K–1for the boron coordination change from 4 to 3, which are, respectively, smaller and larger than found for singly charged isomers forJ ≤ 1. With these, we extend our model forN4(J,T), nonbridging oxygen fractionfnbr(J,T), configurational heat capacity , and entropySconf(J,T) contributions up toJ= 3. A maximum is revealed in atJ= 1, and shown semi‐quantitatively to lead to a corresponding maximum in fragility contribution, akin to that observed in the total fragilities by temperature‐modulated differential scanning calorimetry. Lithium is bound to 4.6(2) oxygen in the pyroborate liquid, with 2.7(1) bonds centered around 1.946(8) Å and 1.9(1) around 2.42(1) Å. In the glass,nLiO= 5.4(4), the increase being due to an increase in the number of short Li–O bonds.

     
    more » « less
  5. Abstract

    Milling two equivalents of K[1,3‐(SiMe3)2C3H3] (=K[A′]) with MgX2(X=Cl, Br) produces the allyl complex [K2MgA′4] (1). Crystals grown from toluene are of the solvated species [((η6‐tol)K)2MgA′4] ([1⋅2(tol)]), a trimetallic monomer with both bridging and terminal (η1) allyl ligands. When recrystallized from hexanes, the unsolvated1forms a 2D coordination polymer, in which the Mg is surrounded by three allyl ligands. The C−C bond lengths differ by only 0.028 Å, indicating virtually complete electron delocalization. This is an unprecedented coordination mode for an allyl ligand bound to Mg. DFT calculations indicate that in isolation, an η3‐allyl configuration on Mg is energetically preferred over the η1‐ (σ‐bonded) arrangement, but the Mg must be in a low coordination environment for it to be experimentally realized. Methyl methacrylate is effectively polymerized by1, with activities that are comparable to K[A′] and greater than the homometallic magnesium complex [{MgA′2}2].

     
    more » « less