Learning multi-agent system dynamics has been extensively studied for various real-world applications, such as molecular dynamics in biology, multi-body system in physics, and particle dynamics in material science. Most of the existing models are built to learn single system dynamics, which learn the dynamics from observed historical data and predict the future trajectory. In practice, however, we might observe multiple systems that are generated across different environments, which differ in latent exogenous factors such as temperature and gravity. One simple solution is to learn multiple environment-specific models, but it fails to exploit the potential commonalities among the dynamics across environments and offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning continuous multi-agent system dynamics across environments. Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to capture the continuous interaction among agents. We achieve the model generalization by assuming the dynamics across different environments are governed by common physics laws that can be captured via learning a shared ODE function. The distinct latent exogenous factors learned for each environment are incorporated into the ODE function to account for their differences. To improve model performance, we additionally design two regularization losses to (1) enforce the orthogonality between the learned initial states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance of learned exogenous factors within the same system via contrastive learning. Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range, and can generalize well to new systems with few observations.
more »
« less
Social ODE: Multi-agent Trajectory Forecasting with Neural Ordinary Differential Equations.
Wen, S., Wang, H., Metaxas, D. (2022). Social ODE: Multi-agent Trajectory Forecasting with Neural Ordinary Differential Equations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13682. Springer, Cham. https://doi.org/10.1007/978-3-031-20047-2_13 Multi-agent trajectory forecasting has recently attracted a lot of attention due to its widespread applications including autonomous driving. Most previous methods use RNNs or Transformers to model agent dynamics in the temporal dimension and social pooling or GNNs to model interactions with other agents; these approaches usually fail to learn the underlying continuous temporal dynamics and agent interactions explicitly. To address these problems, we propose Social ODE which explicitly models temporal agent dynamics and agent interactions. Our approach leverages Neural ODEs to model continuous temporal dynamics, and incorporates distance, interaction intensity, and aggressiveness estimation into agent interaction modeling in latent space. We show in extensive experiments that our Social ODE approach compares favorably with state-of-the-art, and more importantly, can successfully avoid sudden obstacles and effectively control the motion of the agent, while previous methods often fail in such cases.
more »
« less
- Award ID(s):
- 1951890
- PAR ID:
- 10431064
- Editor(s):
- Avidan, S.; Brostow, G.; Cissé, M.; Farinella, G.M.; Hassner, T.
- Date Published:
- Journal Name:
- Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science
- Volume:
- 13682
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Leading graph ordinary differential equation (ODE) models have offered generalized strategies to model interacting multi-agent dynamical systems in a data-driven approach. They typically consist of a temporal graph encoder to get the initial states and a neural ODE-based generative model to model the evolution of dynamical systems. However, existing methods have severe deficiencies in capacity and efficiency due to the failure to model high-order correlations in long-term temporal trends. To tackle this, in this paper, we propose a novel model named High-Order graPh ODE (HOPE) for learning from dynamic interaction data, which can be naturally represented as a graph. It first adopts a twin graph encoder to initialize the latent state representations of nodes and edges, which consists of two branches to capture spatio-temporal correlations in complementary manners. More importantly, our HOPE utilizes a second-order graph ODE function which models the dynamics for both nodes and edges in the latent space respectively, which enables efficient learning of long-term dependencies from complex dynamical systems. Experiment results on a variety of datasets demonstrate both the effectiveness and efficiency of our proposed method.more » « less
-
This paper studies the problem of modeling multi-agent dynamical systems, where agents could interact mutually to influence their behaviors. Recent research predominantly uses geometric graphs to depict these mutual interactions, which are then captured by powerful graph neural networks (GNNs). However, predicting interacting dynamics in challenging scenarios such as out-of-distribution shift and complicated underlying rules remains unsolved. In this paper, we propose a new approach named Prototypical Graph ODE (PGODE) to address the problem. The core of PGODE is to incorporate prototype decomposition from contextual knowledge into a continuous graph ODE framework. Specifically, PGODE employs representation disentanglement and system parameters to extract both object-level and system-level contexts from historical trajectories, which allows us to explicitly model their independent influence and thus enhances the generalization capability under system changes. Then, we integrate these disentangled latent representations into a graph ODE model, which determines a combination of various interacting prototypes for enhanced model expressivity. The entire model is optimized using an end-to-end variational inference framework to maximize the likelihood. Extensive experiments in both in-distribution and out-of-distribution settings validate the superiority of PGODE compared to various baselines.more » « less
-
Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically discover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training.more » « less
-
Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically dis- cover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training.more » « less
An official website of the United States government

