skip to main content


Title: Inferring Relational Potentials in Interacting Systems
Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically discover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training.  more » « less
Award ID(s):
2038493
NSF-PAR ID:
10466333
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Systems consisting of interacting agents are prevalent in the world, ranging from dynamical systems in physics to complex biological networks. To build systems which can interact robustly in the real world, it is thus important to be able to infer the precise interactions governing such systems. Existing approaches typically dis- cover such interactions by explicitly modeling the feed-forward dynamics of the trajectories. In this work, we propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions that enables greater flexibility in trajectory modeling: it discovers a set of relational potentials, represented as energy functions, which when minimized reconstruct the original trajectory. NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed. We illustrate that with these representations NIIP displays unique capabilities in test-time. First, it allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting. Additionally, it allows adding external hand-crafted potentials at test-time. Finally, NIIP enables the detection of out-of-distribution samples and anomalies without explicit training. 
    more » « less
  2. Understanding interactions between entities, e.g., joints of the human body, team sports players, etc., is crucial for tasks like forecasting. However, interactions between entities are commonly not observed and often hard to quantify. To address this challenge, recently, ‘Neural Relational Inference’ was introduced. It predicts static relations between entities in a system and provides an interpretable representation of the underlying system dynamics that are used for better trajectory forecasting. However, generally, relations between entities change as time progresses. Hence, static relations improperly model the data. In response to this, we develop Dynamic Neural Relational Inference (dNRI), which incorporates insights from sequential latent variable models to predict separate relation graphs for every time-step. We demonstrate on several real-world datasets that modeling dynamic relations improves forecasting of complex trajectories. 
    more » « less
  3. In this paper, we develop a novel and safe control design approach that takes demonstrations provided by a human teacher to enable a robot to accomplish complex manipulation scenarios in dynamic environments. First, an overall task is divided into multiple simpler subtasks that are more appropriate for learning and control objectives. Then, by collecting human demonstrations, the subtasks that require robot movement are modeled by probabilistic movement primitives (ProMPs). We also study two strategies for modifying the ProMPs to avoid collisions with environmental obstacles. Finally, we introduce a rule-base control technique by utilizing a finite-state machine along with a unique means of control design for ProMPs. For the ProMP controller, we propose control barrier and Lyapunov functions to guide the system along a trajectory within the distribution defined by a ProMP while guaranteeing that the system state never leaves more than a desired distance from the distribution mean. This allows for better performance on nonlinear systems and offers solid stability and known bounds on the system state. A series of simulations and experimental studies demonstrate the efficacy of our approach and show that it can run in real time. Note to Practitioners —This paper is motivated by the need to create a teach-by-demonstration framework that captures the strengths of movement primitives and verifiable, safe control. We provide a framework that learns safe control laws from a probability distribution of robot trajectories through the use of advanced nonlinear control that incorporates safety constraints. Typically, such distributions are stochastic, making it difficult to offer any guarantees on safe operation. Our approach ensures that the distribution of allowed robot trajectories is within an envelope of safety and allows for robust operation of a robot. Furthermore, using our framework various probability distributions can be combined to represent complex scenarios in the environment. It will benefit practitioners by making it substantially easier to test and deploy accurate, efficient, and safe robots in complex real-world scenarios. The approach is currently limited to scenarios involving static obstacles, with dynamic obstacle avoidance an avenue of future effort. 
    more » « less
  4. Illegal vehicle parking is a common urban problem faced by major cities in the world, as it incurs traffic jams, which lead to air pollution and traffic accidents. Traditional approaches to detect illegal parking events rely highly on active human efforts. However, these approaches are extremely ineffective to cover a large city. The massive and high quality sharing bike trajectories from Mo- bike offer us with a unique opportunity to design a ubiquitous illegal parking detection system, as most of the illegal parking events happen at curbsides and have significant impact on the bike users. Two main components are employed in the proposed illegal park- ing detection system: 1) trajectory pre-processing, which filters outlier GPS points, performs map-matching and builds trajectory indexes; and 2) illegal parking detection, which models the normal trajectories, extracts features from the evaluation trajectories and utilizes a distribution test-based method to discover the illegal parking events. The system is deployed on the cloud, and used by Mo- bike internally. Finally, extensive experiments and many insightful case studies are presented. 
    more » « less
  5. The understanding of chaotic systems is challenging not only for theoretical research but also for many important applications. Chaotic behavior is found in many nonlinear dynamical systems, such as those found in climate dynamics, weather, the stock market, and the space-time dynamics of virus spread. A reliable solution for these systems must handle their complex space-time dynamics and sensitive dependence on initial conditions. We develop a deep learning framework to push the time horizon at which reliable predictions can be made further into the future by better evaluating the consequences of local errors when modeling nonlinear systems. Our approach observes the future trajectories of initial errors at a time horizon to model the evolution of the loss to that point with two major components: 1) a recurrent architecture, Error Trajectory Tracing, that is designed to trace the trajectories of predictive errors through phase space, and 2) a training regime, Horizon Forcing, that pushes the model’s focus out to a predetermined time horizon. We validate our method on classic chaotic systems and real-world time series prediction tasks with chaotic characteristics, and show that our approach outperforms the current state-of-the-art methods. 
    more » « less