In this work, we design and experimentally demonstrate the first, to the best of our knowledge, integrated polarization splitters and rotators at blue wavelengths. We develop compact and efficient designs for both a polarization splitter and rotator at a 422-nm wavelength, an important laser-cooling transition for88Sr+ions. These devices are fabricated in a 200-mm wafer-scale process and experimentally demonstrated, resulting in a measured polarization-splitter transverse-electric thru-port coupling of 98.0% and transverse-magnetic tap-port coupling of 77.6% for a compact 16-µm-long device and a polarization-rotator conversion efficiency of 92.2% for a separate compact 111-µm-long device. This work paves the way for more sophisticated integrated control of trapped-ion and neutral-atom quantum systems.
Integrated polarization rotators and splitters are designed for the first time at visible wavelengths. Specifically, an adiabatic polarization rotator, an off-axis polarization rotator, and a mode-coupling polarization splitter are designed in a silicon-nitride platform.
more » « less- Award ID(s):
- 2016244
- PAR ID:
- 10431126
- Date Published:
- Journal Name:
- Frontiers in Optics + Laser Science
- Page Range / eLocation ID:
- JTu5A.48
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Compact, wideband structures to enable chip-scale polarization control are essential elements for large-scale integrated photonics. We experimentally validate inversedesigned polarization control structures fabricated on a commercial foundry, demonstrating rotator conversion efficiency of -1.5dB and splitter insertion losses of 1.4dB (TE) and 2.6dB (TM) across C-band.more » « less
-
Compact, wideband structures to enable chip-scale polarization control are essential elements for large-scale integrated photonics. We experimentally validate inversedesigned polarization control structures fabricated on a commercial foundry, demonstrating rotator conversion efficiency of -1.5dB and splitter insertion losses of 1.4dB (TE) and 2.6dB (TM) across C-bandmore » « less
-
The transverse-electric and transverse-magnetic modes of an X-cut thin-film lithium niobate waveguide vary in effective indices and exchange power when the waveguide makes an oblique angle with its crystallographic Z-axis, i.e. its optics axis. We leverage this phenomenon to design a passive fundamental-mode polarization rotator. In our design, the lithium niobate waveguide is tilted at an optimum angle with respect to its Z-axis, such that material anisotropy induces phase-matched polarization conversion. We discuss the rotator’s ideal-device length, crosstalk, and bandwidth. The proposed design yields compact (shorter than 1 mm), low-loss, passive polarization rotators for telecom wavelengths.
-
We designed and characterized a 3D printed acoustic shear wave polarization rotator (PR) based on the specific nature of the fused-deposition-modeling printing process. The principle of the PR is based on rotation of the polarization axis of a shear wave due to the gradual change in orientation of the axis of anisotropy along the direction of wave propagation of a printed layered structure. The component of the shear modulus parallel to the infilled lines within each layer is significantly higher than that in the perpendicular direction. As the PR was printing, a small angle between neighboring layers was introduced, resulting in a 3D helicoidal pattern of distribution of the axes of anisotropy. The polarization of the propagating shear wave follows this pattern leading to the rotation of the polarization axis by a desirable angle. The total rotation angle can be tuned by the number of printed layers. The fabricated [Formula: see text] rotators demonstrate high performance that can be improved by changing the infill fraction settings.