skip to main content


This content will become publicly available on March 26, 2025

Title: Integrated visible-light polarization rotators and splitters for atomic quantum systems

In this work, we design and experimentally demonstrate the first, to the best of our knowledge, integrated polarization splitters and rotators at blue wavelengths. We develop compact and efficient designs for both a polarization splitter and rotator at a 422-nm wavelength, an important laser-cooling transition for88Sr+ions. These devices are fabricated in a 200-mm wafer-scale process and experimentally demonstrated, resulting in a measured polarization-splitter transverse-electric thru-port coupling of 98.0% and transverse-magnetic tap-port coupling of 77.6% for a compact 16-µm-long device and a polarization-rotator conversion efficiency of 92.2% for a separate compact 111-µm-long device. This work paves the way for more sophisticated integrated control of trapped-ion and neutral-atom quantum systems.

 
more » « less
Award ID(s):
2016136 2016244
PAR ID:
10497025
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Letters
Volume:
49
Issue:
7
ISSN:
0146-9592; OPLEDP
Format(s):
Medium: X Size: Article No. 1794
Size(s):
Article No. 1794
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated polarization rotators and splitters are designed for the first time at visible wavelengths. Specifically, an adiabatic polarization rotator, an off-axis polarization rotator, and a mode-coupling polarization splitter are designed in a silicon-nitride platform.

     
    more » « less
  2. In this Letter, we propose and experimentally demonstrate the first, to our knowledge, integrated liquid-crystal-based (LC-based) variable-tap devices for visible-light amplitude modulation. These devices leverage the birefringence of LC medium to actively tune the coupling coefficient between two waveguides. First, we develop the device structure, theory of operation, and design procedure. Next, we summarize the fabrication and LC packaging procedure for these devices. Finally, we experimentally demonstrate amplitude modulation with 15.4-dB tap-port extinction within ±3.1 V for a 14-µm-long device at a 637-nm operating wavelength. These small-form-factor variable-tap devices provide a compact and low-power solution to integrated visible-light amplitude modulation and will enable future high-density integrated visible-light systems.

     
    more » « less
  3. Compact, wideband structures to enable chip-scale polarization control are essential elements for large-scale integrated photonics. We experimentally validate inversedesigned polarization control structures fabricated on a commercial foundry, demonstrating rotator conversion efficiency of -1.5dB and splitter insertion losses of 1.4dB (TE) and 2.6dB (TM) across C-band. 
    more » « less
  4. Compact, wideband structures to enable chip-scale polarization control are essential elements for large-scale integrated photonics. We experimentally validate inversedesigned polarization control structures fabricated on a commercial foundry, demonstrating rotator conversion efficiency of -1.5dB and splitter insertion losses of 1.4dB (TE) and 2.6dB (TM) across C-band 
    more » « less
  5. We present a broadband integrated photonic polarization splitter and rotator (PSR) using adiabatically tapered coupled waveguides with subwavelength grating (SWG) claddings. The PSR adiabatically rotates and splits the fundamental transverse-magnetic (TM0) input to the fundamental transverse-electric (TE0) mode in the coupler waveguide, while passing the TE0input through the same waveguide. The SWGs work as an anisotropic metamaterial and facilitate modal conversions, making the PSR efficient and broadband. We rigorously present our design approaches in each section and show the SWG effect by comparing with and without the SWG claddings. The coupling coefficients in each segment explicitly show a stronger coupling effect when the SWGs are included, confirmed by the coupled-mode theory simulations. The full numerical simulation shows that the SWG-PSR operates at 1500–1750 nm (≈250 nm) wavelengths with an extinction ratio larger than 20 dB, confirmed by the experiment for the 1490–1590 nm range. The insertion losses are below 1.3 dB. Since our PSR is designed based on adiabatical mode evolution, the proposed PSR is expected to be tolerant to fabrication variations and should be broadly applicable to polarization management in photonic integrated circuits.

     
    more » « less