Abstract Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.
more »
« less
Prioritize rapidly scalable methane reductions in efforts to mitigate climate change
Abstract Methane emission reductions are crucial for addressing climate change. It offers short-term benefits as it holds high short-term reductions in radiative forcing. Efforts towards the reduction of methane emissions are already underway. In this study, we compared and analyzed the mitigation benefits of cutting large amounts of methane emissions from the oil and gas sector on short-time scales with reducing an equivalent amount of carbon dioxide using carbon capture and storage (CCS). Characteristics of CCS are that it would require substantial infrastructure development and that it incorporates deployment delays. Results illustrate that prioritizing quickly deployable methane emission reduction alternatives that necessitate minimal construction is an efficient approach to achieve near-term climate change relief. Graphical abstract
more »
« less
- Award ID(s):
- 1647722
- PAR ID:
- 10431177
- Date Published:
- Journal Name:
- Clean Technologies and Environmental Policy
- ISSN:
- 1618-954X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We assess the detectability of COVID‐like emissions reductions in global atmospheric CO2concentrations using a suite of large ensembles conducted with an Earth system model. We find a unique fingerprint of COVID in the simulated growth rate of CO2sampled at the locations of surface measurement sites. Negative anomalies in growth rates persist from January 2020 through December 2021, reaching a maximum in February 2021. However, this fingerprint is not formally detectable unless we force the model with unrealistically large emissions reductions (2 or 4 times the observed reductions). Internal variability and carbon‐concentration feedbacks obscure the detectability of short‐term emission reductions in atmospheric CO2. COVID‐driven changes in the simulated, column‐averaged dry air mole fractions of CO2are eclipsed by large internal variability. Carbon‐concentration feedbacks begin to operate almost immediately after the emissions reduction; these feedbacks reduce the emissions‐driven signal in the atmosphere carbon reservoir and further confound signal detection.more » « less
-
null (Ed.)While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing---a low carbon form of ride-sharing---as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.more » « less
-
null (Ed.)While ride-sharing has emerged as a popular form of transportation in urban areas due to its on-demand convenience, it has become a major contributor to carbon emissions, with recent studies suggesting it is 47% more carbon-intensive than personal car trips. In this paper, we examine the feasibility, costs, and carbon benefits of using electric bike-sharing—a low carbon form of ride-sharing—as a potential substitute for shorter ride-sharing trips, with the overall goal of greening the ride-sharing ecosystem. Using public datasets from New York City, our analysis shows that nearly half of the taxi and rideshare trips in New York are shorts trips of less than 3.5km, and that biking is actually faster than using a car for ultra-short trips of 2km or less. We analyze the cost and carbon benefits of different levels of ride substitution under various scenarios. We find that the additional bikes required to satisfy increased demand from ride substitution increases sub-linearly and results in 6.6% carbon emission reduction for 10% taxi ride substitution. Moreover, this reduction can be achieved through a hybrid mix that requires only a quarter of the bikes to be electric bikes, which reduces system costs. We also find that expanding bike-share systems to new areas that lack bike-share coverage requires additional investments due to the need for new bike stations and bike capacity to satisfy demand but also provides substantial carbon emission reductions. Finally, frequent station repositioning can reduce the number of bikes needed in the system by up to a third for a minimal increase in carbon emissions of 2% from the trucks required to perform repositioning, providing an interesting tradeoff between capital costs and carbon emissions.more » « less
-
Buildings produce a significant share of greenhouse gas (GHG) emissions, making homes and businesses a major factor in climate change. To address this critical challenge, this paper explores achieving net-zero emission through the carbon-aware optimal scheduling of the multi-energy building integrated energy systems (BIES). We integrate advanced technologies and strategies, such as the carbon capture system (CCS), power-to-gas (P2G), carbon tracking, and emission allowance trading, into the traditional BIES scheduling problem. The proposed model enables accurate accounting of carbon emissions associated with building energy systems and facilitates the implementation of low-carbon operations. Furthermore, to address the challenge of accurately assessing uncertainty sets related to forecasting errors of loads, generation, and carbon intensity, we develop a learning-based robust optimization approach for BIES that is robust in the presence of uncertainty and guarantees statistical feasibility. The proposed approach comprises a shape learning stage and a shape calibration stage to generate an optimal uncertainty set that ensures favorable results from a statistical perspective. Numerical studies conducted based on both synthetic and real-world datasets have demonstrated that the approach yields up to 8.2% cost reduction, compared with conventional methods, in assisting buildings to robustly reach net-zero emissions.more » « less
An official website of the United States government

