skip to main content


Title: An application of vGWAS to differences in flowering time in maize across mega‐environments
Abstract

Genomic regions containing loci with effect sizes that interact with environmental factors are desirable targets for selection because of increasingly unpredictable growing seasons. Although selecting upon such gene‐by‐environment (G × E) loci is vital, identifying significantly associated loci is challenging due to the multiple testing correction. Consequently, G × E loci of small‐ to moderate effect sizes may never be identified via traditional genome‐wide association studies (GWAS). Variance GWAS (vGWAS) have been previously shown to identify G × E loci. Combined with its inherent reduction in the severity of multiple testing, we hypothesized that vGWAS could be successfully used to identify genomic regions likely to contain G × E effects. We used publicly available genotypic and phenotypic data in maize (Zea maysL.) to test the ability of two vGWAS approaches to identify G × E loci controlling two flowering traits. We observed high inflation of from both approaches. This suggests that these two vGWAS approaches are not suitable to the task of identifying G × E loci. We advocate that similar future applications of vGWAS use more sophisticated models that can adequately control the inflation of . Otherwise, the application of vGWAS to search for G × E effects that are critical for combating the effects of climate change will not reach its full potential.

 
more » « less
Award ID(s):
1733606
NSF-PAR ID:
10431312
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Crop Science
Volume:
63
Issue:
5
ISSN:
0011-183X
Format(s):
Medium: X Size: p. 2807-2817
Size(s):
["p. 2807-2817"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Genetic interactions have been recognized as a potentially important contributor to the heritability of complex diseases. Nevertheless, due to small effect sizes and stringent multiple‐testing correction, identifying genetic interactions in complex diseases is particularly challenging. To address the above challenges, many genomic research initiatives collaborate to form large‐scale consortia and develop open access to enable sharing of genome‐wide association study (GWAS) data. Despite the perceived benefits of data sharing from large consortia, a number of practical issues have arisen, such as privacy concerns on individual genomic information and heterogeneous data sources from distributed GWAS databases. In the context of large consortia, we demonstrate that the heterogeneously appearing marginal effects over distributed GWAS databases can offer new insights into genetic interactions for which conventional methods have had limited success. In this paper, we develop a novel two‐stage testing procedure, namedphylogenY‐based effect‐size tests for interactions using first 2 moments(YETI2), to detect genetic interactions through bothpooled marginal effects, in terms of averaging site‐specific marginal effects, andheterogeneity in marginal effectsacross sites, using a meta‐analytic framework. YETI2 can not only be applied to large consortia without shared personal information but also can be used to leverage underlyingheterogeneity in marginal effectsto prioritize potential genetic interactions. We investigate the performance of YETI2 through simulation studies and apply YETI2 to bladder cancer data from dbGaP.

     
    more » « less
  2. null (Ed.)
    Abstract Background Advances in genotyping and phenotyping techniques have enabled the acquisition of a great amount of data. Consequently, there is an interest in multivariate statistical analyses that identify genomic regions likely to contain causal mutations affecting multiple traits (i.e., pleiotropy). As the demand for multivariate analyses increases, it is imperative that optimal tools are available to assess their performance. To facilitate the testing and validation of these multivariate approaches, we developed simplePHENOTYPES, an R/CRAN package that simulates pleiotropy, partial pleiotropy, and spurious pleiotropy in a wide range of genetic architectures, including additive, dominance and epistatic models. Results We illustrate simplePHENOTYPES’ ability to simulate thousands of phenotypes in less than one minute. We then provide two vignettes illustrating how to simulate sets of correlated traits in simplePHENOTYPES. Finally, we demonstrate the use of results from simplePHENOTYPES in a standard GWAS software, as well as the equivalence of simulated phenotypes from simplePHENOTYPES and other packages with similar capabilities. Conclusions simplePHENOTYPES is a R/CRAN package that makes it possible to simulate multiple traits controlled by loci with varying degrees of pleiotropy. Its ability to interface with both commonly-used marker data formats and downstream quantitative genetics software and packages should facilitate a rigorous assessment of both existing and emerging statistical GWAS and GS approaches. simplePHENOTYPES is also available at https://github.com/samuelbfernandes/simplePHENOTYPES . 
    more » « less
  3. Abstract Maize inflorescence is a complex phenotype that involves the physical and developmental interplay of multiple traits. Given the evidence that genes could pleiotropically contribute to several of these traits, we used publicly available maize data to assess the ability of multivariate genome-wide association study (GWAS) approaches to identify pleiotropic quantitative trait loci (pQTL). Our analysis of 23 publicly available inflorescence and leaf-related traits in a diversity panel of n = 281 maize lines genotyped with 376,336 markers revealed that the two multivariate GWAS approaches we tested were capable of identifying pQTL in genomic regions coinciding with similar associations found in previous studies. We then conducted a parallel simulation study on the same individuals, where it was shown that multivariate GWAS approaches yielded a higher true-positive quantitative trait nucleotide (QTN) detection rate than comparable univariate approaches for all evaluated simulation settings except for when the correlated simulated traits had a heritability of 0.9. We therefore conclude that the implementation of state-of-the-art multivariate GWAS approaches is a useful tool for dissecting pleiotropy and their more widespread implementation could facilitate the discovery of genes and other biological mechanisms underlying maize inflorescence. 
    more » « less
  4. Abstract

    Discovery and analysis of genetic variants underlying agriculturally important traits are key to molecular breeding of crops. Reduced representation approaches have provided cost‐efficient genotyping using next‐generation sequencing. However, accurate genotype calling from next‐generation sequencing data is challenging, particularly in polyploid species due to their genome complexity. Recently developed Bayesian statistical methods implemented in available software packages, polyRAD, EBG, and updog, incorporate error rates and population parameters to accurately estimate allelic dosage across any ploidy. We used empirical and simulated data to evaluate the three Bayesian algorithms and demonstrated their impact on the power of genome‐wide association study (GWAS) analysis and the accuracy of genomic prediction. We further incorporated uncertainty in allelic dosage estimation by testing continuous genotype calls and comparing their performance to discrete genotypes in GWAS and genomic prediction. We tested the genotype‐calling methods using data from two autotetraploid species,Miscanthus sacchariflorusandVaccinium corymbosum, and performed GWAS and genomic prediction. In the empirical study, the tested Bayesian genotype‐calling algorithms differed in their downstream effects on GWAS and genomic prediction, with some showing advantages over others. Through subsequent simulation studies, we observed that at low read depth, polyRAD was advantageous in its effect on GWAS power and limit of false positives. Additionally, we found that continuous genotypes increased the accuracy of genomic prediction, by reducing genotyping error, particularly at low sequencing depth. Our results indicate that by using the Bayesian algorithm implemented in polyRAD and continuous genotypes, we can accurately and cost‐efficiently implement GWAS and genomic prediction in polyploid crops.

     
    more » « less
  5. INTRODUCTION Genome-wide association studies (GWASs) have identified thousands of human genetic variants associated with diverse diseases and traits, and most of these variants map to noncoding loci with unknown target genes and function. Current approaches to understand which GWAS loci harbor causal variants and to map these noncoding regulators to target genes suffer from low throughput. With newer multiancestry GWASs from individuals of diverse ancestries, there is a pressing and growing need to scale experimental assays to connect GWAS variants with molecular mechanisms. Here, we combined biobank-scale GWASs, massively parallel CRISPR screens, and single-cell sequencing to discover target genes of noncoding variants for blood trait loci with systematic targeting and inhibition of noncoding GWAS loci with single-cell sequencing (STING-seq). RATIONALE Blood traits are highly polygenic, and GWASs have identified thousands of noncoding loci that map to candidate cis -regulatory elements (CREs). By combining CRE-silencing CRISPR perturbations and single-cell readouts, we targeted hundreds of GWAS loci in a single assay, revealing target genes in cis and in trans . For select CREs that regulate target genes, we performed direct variant insertion. Although silencing the CRE can identify the target gene, direct variant insertion can identify magnitude and direction of effect on gene expression for the GWAS variant. In select cases in which the target gene was a transcription factor or microRNA, we also investigated the gene-regulatory networks altered upon CRE perturbation and how these networks differ across blood cell types. RESULTS We inhibited candidate CREs from fine-mapped blood trait GWAS variants (from ~750,000 individual of diverse ancestries) in human erythroid progenitors. In total, we targeted 543 variants (254 loci) mapping to candidate CREs, generating multimodal single-cell data including transcriptome, direct CRISPR gRNA capture, and cell surface proteins. We identified target genes in cis (within 500 kb) for 134 CREs. In most cases, we found that the target gene was the closest gene and that specific enhancer-associated biochemical hallmarks (H3K27ac and accessible chromatin) are essential for CRE function. Using multiple perturbations at the same locus, we were able to distinguished between causal variants from noncausal variants in linkage disequilibrium. For a subset of validated CREs, we also inserted specific GWAS variants using base-editing STING-seq (beeSTING-seq) and quantified the effect size and direction of GWAS variants on gene expression. Given our transcriptome-wide data, we examined dosage effects in cis and trans in cases in which the cis target is a transcription factor or microRNA. We found that trans target genes are also enriched for GWAS loci, and identified gene clusters within trans gene networks with distinct biological functions and expression patterns in primary human blood cells. CONCLUSION In this work, we investigated noncoding GWAS variants at scale, identifying target genes in single cells. These methods can help to address the variant-to-function challenges that are a barrier for translation of GWAS findings (e.g., drug targets for diseases with a genetic basis) and greatly expand our ability to understand mechanisms underlying GWAS loci. Identifying causal variants and their target genes with STING-seq. Uncovering causal variants and their target genes or function are a major challenge for GWASs. STING-seq combines perturbation of noncoding loci with multimodal single-cell sequencing to profile hundreds of GWAS loci in parallel. This approach can identify target genes in cis and trans , measure dosage effects, and decipher gene-regulatory networks. 
    more » « less