Abstract We present a deterministic global optimization method for nonlinear programming formulations constrained by stiff systems of ordinary differential equation (ODE) initial value problems (IVPs). The examples arise from dynamic optimization problems exhibiting both fast and slow transient phenomena commonly encountered in model‐based systems engineering applications. The proposed approach utilizes unconditionally stable implicit integration methods to reformulate the ODE‐constrained problem into a nonconvex nonlinear program (NLP) with implicit functions embedded. This problem is then solved to global optimality in finite time using a spatial branch‐and‐bound framework utilizing convex/concave relaxations of implicit functions constructed by a method which fully exploits problem sparsity. The algorithms were implemented in the Julia programming language within the EAGO.jl package and demonstrated on five illustrative examples with varying complexity relevant in process systems engineering. The developed methods enable the guaranteed global solution of dynamic optimization problems with stiff ODE–IVPs embedded.
more »
« less
Extended McCormick relaxation rules for handling empty arguments representing infeasibility
McCormick’s relaxation technique is one of the most versatile and commonly used methods for computing the convex relaxations necessary for deterministic global optimization. The core of the method is a set of rules for propagating relaxations through basic arithmetic operations. Computationally, each rule operates on four-tuples describing each input argument in terms of a lower bound value, an upper bound value, a convex relaxation value, and a concave relaxation value. We call such tuples McCormick objects. This paper extends McCormick’s rules to accommodate input objects that are empty (i.e., the convex relaxation value lies above the concave, or both relaxation values lie outside the bounds). Empty McCormick objects provide a natural way to represent infeasibility and are readily generated by McCormick-based domain reduction techniques. The standard McCormick rules are strictly undefined for empty inputs and applying them anyway can yield relaxations that are non-convex/concave on infeasible parts of their domains. In contrast, our extended rules always produce relaxations that are well-defined and convex/concave on their entire domain. This capability has important applications in reduced-space global optimization, global dynamic optimization, and domain reduction.
more »
« less
- Award ID(s):
- 1949747
- PAR ID:
- 10431468
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Global Optimization
- Volume:
- 87
- ISSN:
- 0925-5001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An extensible open-source deterministic global optimizer (EAGO) programmed entirely in the Julia language is presented. EAGO was developed to serve the need for supporting higher-complexity user-defined functions (e.g. functions defined implicitly via algorithms) within optimization models. EAGO embeds a first-of-its-kind implementation of McCormick arithmetic in an Evaluator structure allowing for the construction of convex/concave relaxations using a combination of source code transformation, multiple dispatch, and context-specific approaches. Utilities are included to parse userdefined functions into a directed acyclic graph representation and perform symbolic transformations enabling dramatically improved solution speed. EAGO is compatible with a wide variety of local optimizers, the most exhaustive library of transcendental functions, and allows for easy accessibility through the JuMP modelling language. Together with Julia’s minimalist syntax and competitive speed, these powerful features make EAGO a versatile research platform enabling easy construction of novel meta-solvers, incorporation and utilization of new relaxations, and extension to advanced problem formulations encountered in engineering and operations research (e.g. multilevel problems, user-defined functions). The applicability and flexibility of this novel software is demonstrated on a diverse set of examples. Lastly, EAGO is demonstrated to perform comparably to state-of-the-art commercial optimizers on a benchmarking test set.more » « less
-
In this paper, we introduce new relaxations for the hypograph of composite functions assuming that the outer function is supermodular and concave extendable. Relying on a recently introduced relaxation framework, we devise a separation algorithm for the graph of the outer function over P, where P is a special polytope to capture the structure of each inner function using its finitely many bounded estimators. The separation algorithm takes [Formula: see text] time, where d is the number of inner functions and n is the number of estimators for each inner function. Consequently, we derive large classes of inequalities that tighten prevalent factorable programming relaxations. We also generalize a decomposition result and devise techniques to simultaneously separate hypographs of various supermodular, concave-extendable functions using facet-defining inequalities. Assuming that the outer function is convex in each argument, we characterize the limiting relaxation obtained with infinitely many estimators as the solution of an optimal transport problem. When the outer function is also supermodular, we obtain an explicit integral formula for this relaxation.more » « less
-
We develop techniques to convexify a set that is invariant under permutation and/or change of sign of variables and discuss applications of these results. First, we convexify the intersection of the unit ball of a permutation and sign-invariant norm with a cardinality constraint. This gives a nonlinear formulation for the feasible set of sparse principal component analysis (PCA) and an alternative proof of the K-support norm. Second, we characterize the convex hull of sets of matrices defined by constraining their singular values. As a consequence, we generalize an earlier result that characterizes the convex hull of rank-constrained matrices whose spectral norm is below a given threshold. Third, we derive convex and concave envelopes of various permutation-invariant nonlinear functions and their level sets over hypercubes, with congruent bounds on all variables. Finally, we develop new relaxations for the exterior product of sparse vectors. Using these relaxations for sparse PCA, we show that our relaxation closes 98% of the gap left by a classical semidefinite programming relaxation for instances where the covariance matrices are of dimension up to 50 × 50.more » « less
-
We describe strong convex valid inequalities for conic quadratic mixed 0–1 optimization. These inequalities can be utilized for solving numerous practical nonlinear discrete optimization problems from value-at-risk minimization to queueing system design, from robust interdiction to assortment optimization through appropriate conic quadratic mixed 0–1 relaxations. The inequalities exploit the submodularity of the binary restrictions and are based on the polymatroid inequalities over binaries for the diagonal case. We prove that the convex inequalities completely describe the convex hull of a single conic quadratic constraint as well as the rotated cone constraint over binary variables and unbounded continuous variables. We then generalize and strengthen the inequalities by incorporating additional constraints of the optimization problem. Computational experiments on mean-risk optimization with correlations, assortment optimization, and robust conic quadratic optimization indicate that the new inequalities strengthen the convex relaxations substantially and lead to significant performance improvements.more » « less
An official website of the United States government

