skip to main content


Title: Temperature-Dependent Characteristics and Electrostatic Threshold Voltage Tuning of Accumulated Body MOSFETs
Narrow-channel accumulated body nMOSFET devices with p-type side gates surrounding the active area have been electrically characterized between 100 and 400 K with varied side-gate biasing ( Vside ). The subthreshold slope (SS) and drain induced barrier lowering (DIBL) decrease and threshold voltage ( Vt ) increases linearly with reduced temperature and reduced side-gate bias. Detailed analysis on a 27 nm × 78 nm (width × length) device shows SS decreasing from 115 mV/dec at 400 K to 90 mV/dec at 300 K and down to 36 mV/dec at 100 K, DIBL decreasing by approximately 10 mV/V for each 100 K reduction in operating temperature, and Vt increasing from 0.42 to 0.61 V as the temperature is reduced from 400 to 100 K. Vt can be adjusted from ∼ 0.3 to ∼ 1.1 V with ∼ 0.3 V/V sensitivity by depletion or accumulation of the body of the device using Vside . This high level of tunability allows electronic control of Vt and drive current for variable temperature operation in a wide temperature range with extremely low leakage currents ( < 10 −13 A).  more » « less
Award ID(s):
1711626
NSF-PAR ID:
10342040
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Electron Devices
ISSN:
0018-9383
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    This paper provides comprehensive experimental analysis relating to improvements in the two-dimensional (2D) p-type metal–oxide–semiconductor (PMOS) field effect transistors (FETs) by pure van der Waals (vdW) contacts on few-layer tungsten diselenide (WSe2) with high-k metal gate (HKMG) stacks. Our analysis shows that standard metallization techniques (e.g., e-beam evaporation at moderate pressure ~ 10–5 torr) results in significant Fermi-level pinning, but Schottky barrier heights (SBH) remain small (< 100 meV) when using high work function metals (e.g., Pt or Pd). Temperature-dependent analysis uncovers a more dominant contribution to contact resistance from the channel access region and confirms significant improvement through less damaging metallization techniques (i.e., reduced scattering) combined with strongly scaled HKMG stacks (enhanced carrier density). A clean contact/channel interface is achieved through high-vacuum evaporation and temperature-controlled stepped deposition providing large improvements in contact resistance. Our study reports low contact resistance of 5.7 kΩ-µm, with on-state currents of ~ 97 µA/µm and subthreshold swing of ~ 140 mV/dec in FETs with channel lengths of 400 nm. Furthermore, theoretical analysis using a Landauer transport ballistic model for WSe2SB-FETs elucidates the prospects of nanoscale 2D PMOS FETs indicating high-performance (excellent on-state current vs subthreshold swing benchmarks) towards the ultimate CMOS scaling limit.

     
    more » « less
  2. Low InP/dielectric interface trap density Dit will enable low subthreshold swings (SS) in mm-wave MOSFETs [1] using InGaAs/InP composite channels [2] for increased breakdown and in tunnel FETs (TFETs) [3] using InAs/InP heterojunctions [4] for increased tunneling probability. Reducing Dit at the etched InP mesa edges of DHBTs and avalanche photodiodes will reduce leakage currents and increase breakdown voltages. While it can be difficult [5] to extract Dit of III-V interfaces from MOSCAP characteristics, Dit can be readily determined from the SS of long gate length Lg MOSFETs. Here we report InP-channel MOSFETs with record low SS indicating record low Dit at the semiconductor-dielectric interface. The devices use a AlOxNy/ZrO2 gate dielectric and a 14nm channel thickness Tch. A sample of 13 MOSFETs at 2 m Lg shows SS=70mV/dec. (mean) ±3 mV/dec. (standard deviation), corresponding to a minimum Dit ~3×1012 cm-2eV-1. The lowest SS observed at 2 m Lg is 66 mV/dec. The results suggest that wide-bandgap InP layers can be incorporated into MOS device designs without large degradations in DC characteristics arising from interface defects 
    more » « less
  3. Abstract

    The minimization of the subthreshold swing (SS) in transistors is essential for low‐voltage operation and lower power consumption, both critical for mobile devices and internet of things (IoT) devices. The conventional metal‐oxide‐semiconductor field‐effect transistor requires sophisticated dielectric engineering to achieve nearly ideal SS (60 mV dec−1at room temperature). However, another type of transistor, the junction field‐effect transistor (JFET) is free of dielectric layer and can reach the theoretical SS limit without complicated dielectric engineering. The construction of a 2D SnSe/MoS2van der Waals (vdW) heterostructure‐based JFET with nearly ideal SS is reported. It is shown that the SnSe/MoS2vdW heterostructure exhibits excellent p–n diode rectifying characteristics with low saturate current. Using the SnSe as the gate and MoS2as the channel, the SnSe/MoS2vdW heterostructure exhibit well‐behavioured n‐channel JFET characteristics with a small pinch‐off voltageVPof −0.25 V, nearly ideal subthreshold swing SS of 60.3 mV dec−1and high ON/OFF ratio over 106, demonstrating excellent electronic performance especially in the subthreshold regime.

     
    more » « less
  4. Ambipolar dual-gate transistors based on low-dimensional materials, such as graphene, carbon nanotubes, black phosphorus, and certain transition metal dichalcogenides (TMDs), enable reconfigurable logic circuits with a suppressed off-state current. These circuits achieve the same logical output as complementary metal–oxide semiconductor (CMOS) with fewer transistors and offer greater flexibility in design. The primary challenge lies in the cascadability and power consumption of these logic gates with static CMOS-like connections. In this article, high-performance ambipolar dual-gate transistors based on tungsten diselenide (WSe2) are fabricated. A high on–off ratio of 108 and 106, a low off-state current of 100 to 300 fA, a negligible hysteresis, and an ideal subthreshold swing of 62 and 63 mV/dec are measured in the p- and n-type transport, respectively. We demonstrate cascadable and cascaded logic gates using ambipolar TMD transistors with minimal static power consumption, including inverters, XOR, NAND, NOR, and buffers made by cascaded inverters. A thorough study of both the control gate and the polarity gate behavior is conducted. The noise margin of the logic gates is measured and analyzed. The large noise margin enables the implementation of VT-drop circuits, a type of logic with reduced transistor number and simplified circuit design. Finally, the speed performance of the VT-drop and other circuits built by dual-gate devices is qualitatively analyzed. This work makes advancements in the field of ambipolar dual-gate TMD transistors, showing their potential for low-power, high-speed, and more flexible logic circuits. 
    more » « less
  5. Abstract

    In this paper, electrostatically configurable 2D tungsten diselenide (WSe2) electronic devices are demonstrated. Utilizing a novel triple‐gate design, a WSe2device is able to operate as a tunneling field‐effect transistor (TFET), a metal–oxide–semiconductor field‐effect transistor (MOSFET) as well as a diode, by electrostatically tuning the channel doping to the desired profile. The implementation of scaled gate dielectric and gate electrode spacing enables higher band‐to‐band tunneling transmission with the best observed subthreshold swing (SS) among all reported homojunction TFETs on 2D materials. Self‐consistent full‐band atomistic quantum transport simulations quantitatively agree with electrical measurements of both the MOSFET and TFET and suggest that scaling gate oxide below 3 nm is necessary to achieve sub‐60 mV dec−1SS, while further improvement can be obtained by optimizing the spacers. Diode operation is also demonstrated with the best ideality factor of 1.5, owing to the enhanced electrostatic control compared to previous reports. This research sheds light on the potential of utilizing electrostatic doping scheme for low‐power electronics and opens a path toward novel designs of field programmable mixed analog/digital circuitry for reconfigurable computing.

     
    more » « less