skip to main content

Title: Crafting Paper Circuits: Gendered Materials for Circuitry Learning
Given the persistent issues of equity in technology-rich fields, this study argues that our choice of tools and materials significantly impacts both what is possible to be learned as well as who participates. This study examined students’ learning of basic circuitry concepts through the use of paper circuitry toolkits in art-based activities. The data was collected in a 4-day workshop for middle school students (N=17). Findings showed that arts integration promoted the creation of paper circuits that leads to artistic exploration into STEM engagement. Pre- and post-tests results showed improvement for students by gender. Although the boys outperformed the girls on paper circuits, the girls outperformed the boys on e-textiles which is considered more “feminine” than others. The findings imply the nuances between material property and gendered practice to understand how we can better design tools and materials to rupture stagnant norms around educational practices.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
International Conference of the Learning Sciences (ICLS)
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Affective neuroscience research suggests that maturational changes in reward circuitry during adolescence present opportunities for new learning, but likely also contribute to increases in vulnerability for psychiatric disorders such as depression and substance abuse. Basic research in animal models and human neuroimaging has made progress in understanding the normal development of reward circuitry in adolescence, yet, few functional neuroimaging studies have examined puberty-related influences on the functioning of this circuitry. The goal of this study was to address this gap by examining the extent to which striatal activation and cortico-striatal functional connectivity to cues predicting upcoming rewards would be positively associated with pubertal status and levels of pubertal hormones (dehydroepiandrosterone, testosterone, estradiol). Participants included 79 adolescents (10-13 year olds; 47 girls) varying in pubertal status who performed a novel reward cue processing task during fMRI. Pubertal maturation was assessed using sex-specific standardized composite measures based on Tanner staging (self-report and clinical assessment) and scores from the Pubertal Development Scale. These composite measures were computed to index overall pubertal maturation as well as maturation of the adrenal and gonadal axes separately for boys and girls. Basal levels of circulating pubertal hormones were measured using immunoassays from three samples collected weekly upon awakening across a three-week period. Results indicated greater striatal activation and functional connectivity between nucleus accumbens (NAcc) and medial prefrontal cortex (mPFC) to reward cue (vs. no reward cue) on this task. Also, girls with higher levels of estradiol showed reduced activation in left and right caudate and greater NAcc-putamen connectivity. Girls with higher levels of testosterone showed greater NAcc connectivity with the anterior cingulate cortex and the insula. There were no significant associations in boys. Findings suggest that patterns of activation and connectivity in cortico-striatal regions are associated with reward cue processing, particularly in girls. Longitudinal follow-up neuroimaging studies are needed to fully characterize puberty-specific effects on the development of these neural regions and how such changes may contribute to pathways of risk or resilience in adolescence. 
    more » « less
  2. Abstract

    This paper describes the design, implementation and research of the Cyber Sleuth Science Lab (CSSL), an innovative educational program and supporting virtual learning environment, that combines pedagogical theory, gender inclusive instruction strategies, scientific principles/practices, gamification methods, computational thinking, and real-world problem solving. This program provides underrepresented youth, especially girls, with digital forensic knowledge, skills and career pathways, challenging them to explore complex social issues related to technology and to become cyber sleuths using real-world digital forensic methods and tools to solve investigative scenarios. Students also learn about related careers while improving their cyber street smarts. The CSSL incorporates additional “outside of the computer” activities to strengthen students’ engagement such as structured in-classroom discussions, mock trials, and in-person interactions with practitioner role models. The CSSL was piloted in various forms to assess the suitability for in-school and out-of-school settings, and the students predominantly represented racial minorities. Research in this project relied on a mixed methods approach for data collection and analysis, including qualitative and quantitative methods, reinforced using learning analytics generated from the students clicking through the interface and interacting with the system. Analysis of gathered data indicate that the virtual learning environment developed in this project is highly effective for teaching digital forensic knowledge, skills, and abilities that are directly applicable in the workplace. Furthermore, the strategies for gender inclusive STEM instruction implemented in CSSL are effective for engaging girls without being harmful to boys’ engagement. Learning STEM through digital forensic science taps into girls’ motivations to address real-world problems that have direct relevance to their lives, and to protect and serve their community. After participating in the educational program, girls expressed a significantly greater increase in interest, relative to boys, in learning more about careers related to digital forensics and cybersecurity.

    more » « less
  3. Recent reforms in science education have supported the inclusion of engineering in K- 12 curricula. To this end, many science classrooms have incorporated engineering units that include design tasks. Design is an integral part of engineering and helps students think in creative and interdisciplinary ways. In this study, we examined middle-school students’ naturally occurring design conversations in small design teams and their learning of science as a result of engaging in an engineering and science unit. We found that the proportion of different thought processes used by boys and girls was quite similar. Both girls and boys produced a higher percentage of ideas or thoughts associated with divergent thinking, but a lower proportion in convergent thinking, evaluative thinking, and cognitive memory. In addition, gender composition of design teams influenced thought processes expressed by girls and boys. Interestingly, in mixed teams, both girls and boys expressed less divergent thinking than those in single-sex teams. With regard to science content learning, both girls and boys showed statistically significant learning gains. There were no significant gender differences in the pre- and post-test scores. These results suggest that participating in an engineering design task in small design teams provided students opportunities to engage in productive thinking and enhance their learning of the targeted science concept—ecosystems. 
    more » « less
  4. When asked about how they deal with unforeseen problems, novice learners often describe a process of “trial and error.” This process might fairly be described as iteration, a critical step in the design process, but falls short of the practices that engineering education needs to develop. In the face of novel and multifaceted problems, future engineers must be comfortable and competent not just trying again, but identifying failure points, troubleshooting, and running systematic tests with relevant data. To examine the abilities of novice designers to test and effectively refine ideas and prototypes, we conducted qualitative analysis of structured interviews, audio, video, and designs of 11 girls, ages 9 -11, working on computational papercrafts as part of a museum-based STEAM summer camp. The projects involved design and construction of expressive paper and cardboard sculptures with gears and linkages powered by servomotors. Over the course of one day, the girls generated designs inspired by a camp theme, then had to work with mechanics, electronics and craft to create working versions that would be displayed as part of a public exhibit. Computational papercraft was selected because it lowers cost and intimidation. Our design conjecture was that by making materials familiar and abundant, learners would have more relevant knowledge, could easily modify and replicate components, and would therefore be better able to recognize potential faults and more likely to engage in testing and refinement. We also supported design and troubleshooting with a customized circuit board and an online gear simulator. In the first stage of this study, we looked at what engineering practices emerged, given these conditions. We asked: What opportunities for testing and refinement did computational papercrafts open up? What resources and tools do young learners employ when testing and refining designs? Analysis showed that technical supports for testing and refinement were successful in supporting valued testing and refinement practices as youth pursued personal goals. Use of the simulator and customized microcontroller allowed for consideration of multiple alternatives and for “trial before error.” Learners were able to conduct focused tests on subsystems of their paper machines, and to make “small bets,” keeping initial ideas and designs fluid. Inexpensive materials also allowed them to test and refine at late project stages, without feeling that they were wasting time or materials. The analysis sheds light on young students practices of testing and refinement, and how to best support young people as they begin learning trajectories in engineering. The approach is especially relevant within making-oriented engineering education and other settings working to broaden participation in engineering. 
    more » « less
  5. null (Ed.)
    E-textiles, which embed circuitry into textile fabrics, blend art and creative expression with engineering, making it a popular choice for STEAM classrooms [6, 12]. Currently, e-textile development relies on tools intended for traditional embedded systems, which utilize printed circuit boards and insulated wires. These tools do not translate well to e-textiles, which utilize fabric and uninsulated conductive thread. This mismatch of tools and materials can lead to an overly complicated development process for novices. In particular, rapid prototyping tools for traditional embedded systems are poorly matched for e-textile prototyping. This paper presents the ThreadBoard, a tool that supports rapid prototyping of e-textile circuits. With rapid prototyping, students can test circuit designs and identify circuitry errors prior to their sewn project. We present the design process used to iteratively create the ThreadBoard’s layout, with the goal of improving its usability for e-textile creators. 
    more » « less