skip to main content


Search for: All records

Award ID contains: 2107821

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We forecast the prospects for cross-correlating future line intensity mapping (LIM) surveys with the current and future Ly-α forest measurements. Using large cosmological hydrodynamic simulations, we model the emission from the CO rotational transition in the CO Mapping Array Project LIM experiment at the 5-yr benchmark and the Ly-α forest absorption signal for extended Baryon Acoustic Oscillations (BOSS), Dark energy survey instrument (DESI), and Prime Focus multiplex Spectroscopy survey (PFS). We show that CO × Ly-α forest significantly enhances the detection signal-to-noise ratio (S/N) of CO, with up to $300{{\ \rm per\, cent}}$ improvement when correlated with the PFS Ly-α forest survey and a 50–75 per cent enhancement with the available eBOSS or the upcoming DESI observations. This is competitive with even CO × spectroscopic galaxy surveys. Furthermore, our study suggests that the clustering of CO emission is tightly constrained by CO × Ly-α forest due to the increased sensitivity and the simplicity of Ly-α absorption modelling. Foreground contamination or systematics are expected not to be shared between LIM and Ly-α forest observations, providing an unbiased inference. Ly-α forest will aid in detecting the first LIM signals. We also estimate that [C ii] × Ly-α forest measurements from Experiment for Cryogenic Large-Aperture Intensity Mapping and DESI/eBOSS should have a larger S/N than planned [C ii] × quasar observations by about an order of magnitude.

     
    more » « less
  2. Abstract

    Lyαtomography surveys have begun to produce 3D maps of the intergalactic medium opacity atz∼ 2.5 with megaparsec resolution. These surveys provide an exciting new way to discover and characterize high-redshift overdensities, including the progenitors of today’s massive groups and clusters of galaxies, known as protogroups and protoclusters. We use the IllustrisTNG-300 hydrodynamical simulation to build mock maps that realistically mimic those observed in the LyαTomographic IMACS Survey. We introduce a novel method for delineating the boundaries of structures detected in 3D Lyαflux maps by applying the watershed algorithm. We provide estimators for the dark matter masses of these structures (atz∼ 2.5), their descendant halo masses atz= 0, and the corresponding uncertainties. We also investigate the completeness of this method for the detection of protogroups and protoclusters. Compared to earlier work, we apply and characterize our method over a wider mass range that extends to massive protogroups. We also assess the widely used fluctuating Gunn–Peterson approximation applied to dark-matter-only simulations; we conclude that while it is adequate for estimating the Lyαabsorption signal from moderate-to-massive protoclusters (≳1014.2h−1M), it artificially merges a minority of lower-mass structures with more massive neighbors. Our methods will be applied to current and future Lyαtomography surveys to create catalogs of overdensities and study environment-dependent galactic evolution in the Cosmic Noon era.

     
    more » « less
  3. Abstract The direct measurement of the universe’s expansion history and the search for terrestrial planets in habitable zones around solar-type stars require extremely high-precision radial-velocity measures over a decade. This study proposes an approach for enabling high-precision radial-velocity measurements from space. The concept presents a combination of a high-dispersion densified pupil spectrograph and a novel line-of-sight monitor for telescopes. The precision of the radial-velocity measurements is determined by combining the spectrophotometric accuracy and the quality of the absorption lines in the recorded spectrum. Therefore, a highly dispersive densified pupil spectrograph proposed to perform stable spectroscopy can be utilized for high-precision radial-velocity measures. A concept involving the telescope’s line-of-sight monitor is developed to minimize the change of the telescope’s line of sight over a decade. This monitor allows the precise measurement of long-term telescope drift without any significant impact on the Airy disk when the densified pupil spectra are recorded. We analytically derive the uncertainty of the radial-velocity measurements, which is caused by the residual offset of the lines of sight at two epochs. We find that the error could be reduced down to approximately 1 cm s −1 , and the precision will be limited by another factor (e.g., wavelength calibration uncertainty). A combination of the high-precision spectrophotometry and the high spectral resolving power could open a new path toward the characterization of nearby non-transiting habitable planet candidates orbiting late-type stars. We present two simple and compact highly dispersed densified pupil spectrograph designs for cosmology and exoplanet sciences. 
    more » « less