skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Untilting Line Bundles on Perfectoid Spaces
Abstract Let $$X$$ be a perfectoid space with tilt $$X^\flat $$. We build a natural map $$\theta :\Pic X^\flat \to \lim \Pic X$$ where the (inverse) limit is taken over the $$p$$-power map and show that $$\theta $$ is an isomorphism if $$R = \Gamma (X,\sO _X)$$ is a perfectoid ring. As a consequence, we obtain a characterization of when the Picard groups of $$X$$ and $$X^\flat $$ agree in terms of the $$p$$-divisibility of $$\Pic X$$. The main technical ingredient is the vanishing of higher derived limits of the unit group $R^*$, whence the main result follows from the Grothendieck spectral sequence.  more » « less
Award ID(s):
1646385
PAR ID:
10432095
Author(s) / Creator(s):
Date Published:
Journal Name:
International Mathematics Research Notices
Volume:
2023
Issue:
3
ISSN:
1073-7928
Page Range / eLocation ID:
2572 to 2591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This is a continuation, and conclusion, of our study of bounded solutions u of the semilinear parabolic equation $$u_t=u_{xx}+f(u)$$ u t = u xx + f ( u ) on the real line whose initial data $$u_0=u(\cdot ,0)$$ u 0 = u ( · , 0 ) have finite limits $$\theta ^\pm $$ θ ± as $$x\rightarrow \pm \infty $$ x → ± ∞ . We assume that f is a locally Lipschitz function on $$\mathbb {R}$$ R satisfying minor nondegeneracy conditions. Our goal is to describe the asymptotic behavior of u ( x ,  t ) as $$t\rightarrow \infty $$ t → ∞ . In the first two parts of this series we mainly considered the cases where either $$\theta ^-\ne \theta ^+$$ θ - ≠ θ + ; or $$\theta ^\pm =\theta _0$$ θ ± = θ 0 and $$f(\theta _0)\ne 0$$ f ( θ 0 ) ≠ 0 ; or else $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is a stable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . In all these cases we proved that the corresponding solution u is quasiconvergent—if bounded—which is to say that all limit profiles of $$u(\cdot ,t)$$ u ( · , t ) as $$t\rightarrow \infty $$ t → ∞ are steady states. The limit profiles, or accumulation points, are taken in $$L^\infty _{loc}(\mathbb {R})$$ L loc ∞ ( R ) . In the present paper, we take on the case that $$\theta ^\pm =\theta _0$$ θ ± = θ 0 , $$f(\theta _0)=0$$ f ( θ 0 ) = 0 , and $$\theta _0$$ θ 0 is an unstable equilibrium of the equation $${{\dot{\xi }}}=f(\xi )$$ ξ ˙ = f ( ξ ) . Our earlier quasiconvergence theorem in this case involved some restrictive technical conditions on the solution, which we now remove. Our sole condition on $$u(\cdot ,t)$$ u ( · , t ) is that it is nonoscillatory (has only finitely many critical points) at some $$t\ge 0$$ t ≥ 0 . Since it is known that oscillatory bounded solutions are not always quasiconvergent, our result is nearly optimal. 
    more » « less
  2. We study entropy flattening: Given a circuit C_X implicitly describing an n-bit source X (namely, X is the output of C_X on a uniform random input), construct another circuit C_Y describing a source Y such that (1) source Y is nearly flat (uniform on its support), and (2) the Shannon entropy of Y is monotonically related to that of X. The standard solution is to have C_Y evaluate C_X altogether Theta(n^2) times on independent inputs and concatenate the results (correctness follows from the asymptotic equipartition property). In this paper, we show that this is optimal among black-box constructions: Any circuit C_Y for entropy flattening that repeatedly queries C_X as an oracle requires Omega(n^2) queries. Entropy flattening is a component used in the constructions of pseudorandom generators and other cryptographic primitives from one-way functions [Johan Håstad et al., 1999; John Rompel, 1990; Thomas Holenstein, 2006; Iftach Haitner et al., 2006; Iftach Haitner et al., 2009; Iftach Haitner et al., 2013; Iftach Haitner et al., 2010; Salil P. Vadhan and Colin Jia Zheng, 2012]. It is also used in reductions between problems complete for statistical zero-knowledge [Tatsuaki Okamoto, 2000; Amit Sahai and Salil P. Vadhan, 1997; Oded Goldreich et al., 1999; Vadhan, 1999]. The Theta(n^2) query complexity is often the main efficiency bottleneck. Our lower bound can be viewed as a step towards proving that the current best construction of pseudorandom generator from arbitrary one-way functions by Vadhan and Zheng (STOC 2012) has optimal efficiency. 
    more » « less
  3. Abstract: We consider the quadratic Zakharov-Kuznetsov equation $$\partial_t u + \partial_x \Delta u + \partial_x u^2=0$$ on $$\Bbb{R}^3$$. A solitary wave solution is given by $Q(x-t,y,z)$, where $$Q$$ is the ground state solution to $$-Q+\Delta Q+Q^2=0$$. We prove the asymptotic stability of these solitary wave solutions. Specifically, we show that initial data close to $$Q$$ in the energy space, evolves to a solution that, as $$t\to\infty$$, converges to a rescaling and shift of $Q(x-t,y,z)$ in $L^2$ in a rightward shifting region $$x>\delta t-\tan\theta\sqrt{y^2+z^2}$$ for $$0\leq\theta\leq{\pi\over 3}-\delta$$. 
    more » « less
  4. abstract: In the past years, there has been a new light shed on the harmonic map problem with free boundary in view of its connection with nonlocal equations. Here we fully exploit this link, considering the harmonic map flow with free boundary $$ (0.1)\hskip77pt\cases{u_t=\Delta u& in $$\Bbb{R}^2_+\times (0,T)$$,\cr u(x,0,t)\in\Bbb{S}^1& for all $$(x,0,t)\in\partial\Bbb{R}^2_+\times (0,T)$$,\cr {du\over dy}(x,0,t)\perp T_{u(x,0,t)}\Bbb{S}^1& for all $$(x,0,t)\in\partial\Bbb{R}^2_+\times (0,T)$$,\cr u(\cdot, 0)=u_0& in $$\Bbb{R}^2_+$} $$ for a function $$u:\Bbb{R}^2_+\times [0,T)\to\Bbb{R}^2$$. Here $$u_0 :\Bbb{R}^2_+\to\Bbb{R}^2$$ is a given smooth map and $$\perp$$ stands for orthogonality. We prove the existence of initial data $$u_0$$ such that (0.1) blows up at finite time with a profile being the half-harmonic map. This answers a question raised by Chen and Lin. 
    more » « less
  5. In this paper we derive the best constant for the following L ∞<#comment/> L^{\infty } -type Gagliardo-Nirenberg interpolation inequality ‖<#comment/> u ‖<#comment/> L ∞<#comment/> ≤<#comment/> C q , ∞<#comment/> , p ‖<#comment/> u ‖<#comment/> L q + 1 1 −<#comment/> θ<#comment/> ‖<#comment/> ∇<#comment/> u ‖<#comment/> L p θ<#comment/> , θ<#comment/> = p d d p + ( p −<#comment/> d ) ( q + 1 ) , \begin{equation*} \|u\|_{L^{\infty }}\leq C_{q,\infty ,p} \|u\|^{1-\theta }_{L^{q+1}}\|\nabla u\|^{\theta }_{L^p},\quad \theta =\frac {pd}{dp+(p-d)(q+1)}, \end{equation*} where parameters q q and p p satisfy the conditions p > d ≥<#comment/> 1 p>d\geq 1 , q ≥<#comment/> 0 q\geq 0 . The best constant C q , ∞<#comment/> , p C_{q,\infty ,p} is given by C q , ∞<#comment/> , p = θ<#comment/> −<#comment/> θ<#comment/> p ( 1 −<#comment/> θ<#comment/> ) θ<#comment/> p M c −<#comment/> θ<#comment/> d , M c ∫<#comment/> R d u c , ∞<#comment/> q + 1 d x , \begin{equation*} C_{q,\infty ,p}=\theta ^{-\frac {\theta }{p}}(1-\theta )^{\frac {\theta }{p}}M_c^{-\frac {\theta }{d}},\quad M_c≔\int _{\mathbb {R}^d}u_{c,\infty }^{q+1} dx, \end{equation*} where u c , ∞<#comment/> u_{c,\infty } is the unique radial non-increasing solution to a generalized Lane-Emden equation. The case of equality holds when u = A u c , ∞<#comment/> ( λ<#comment/> ( x −<#comment/> x 0 ) ) u=Au_{c,\infty }(\lambda (x-x_0)) for any real numbers A A , λ<#comment/> > 0 \lambda >0 and x 0 ∈<#comment/> R d x_{0}\in \mathbb {R}^d . In fact, the generalized Lane-Emden equation in R d \mathbb {R}^d contains a delta function as a source and it is a Thomas-Fermi type equation. For q = 0 q=0 or d = 1 d=1 , u c , ∞<#comment/> u_{c,\infty } have closed form solutions expressed in terms of the incomplete Beta functions. Moreover, we show that u c , m →<#comment/> u c , ∞<#comment/> u_{c,m}\to u_{c,\infty } and C q , m , p →<#comment/> C q , ∞<#comment/> , p C_{q,m,p}\to C_{q,\infty ,p} as m →<#comment/> + ∞<#comment/> m\to +\infty for d = 1 d=1 , where u c , m u_{c,m} and C q , m , p C_{q,m,p} are the function achieving equality and the best constant of L m L^m -type Gagliardo-Nirenberg interpolation inequality, respectively. 
    more » « less