skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A global catalog of whole-genome diversity from 233 primate species
The rich diversity of morphology and behavior displayed across primate species provides an informative context in which to study the impact of genomic diversity on fundamental biological processes. Analysis of that diversity provides insight into long-standing questions in evolutionary and conservation biology and is urgent given severe threats these species are facing. Here, we present high-coverage whole-genome data from 233 primate species representing 86% of genera and all 16 families. This dataset was used, together with fossil calibration, to create a nuclear DNA phylogeny and to reassess evolutionary divergence times among primate clades. We found within-species genetic diversity across families and geographic regions to be associated with climate and sociality, but not with extinction risk. Furthermore, mutation rates differ across species, potentially influenced by effective population sizes. Lastly, we identified extensive recurrence of missense mutations previously thought to be human specific. This study will open a wide range of research avenues for future primate genomic research.  more » « less
Award ID(s):
0621020 1232349
PAR ID:
10432190
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Science
Volume:
380
Issue:
6648
ISSN:
0036-8075
Page Range / eLocation ID:
906 to 913
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Gaining a better understanding of the rates and patterns of meiotic recombination is crucial for improving evolutionary genomic modeling, with applications ranging from demographic to selective inference. Although previous research has provided important insights into the landscape of crossovers in humans and other haplorrhines, our understanding of both the considerably more common outcome of recombination (i.e. noncrossovers) as well as the landscapes in more distantly related primates (i.e. strepsirrhines) remains limited owing to difficulties associated with both the identification of noncrossover tracts as well as species sampling. Thus, in order to elucidate recombination patterns in this understudied branch of the primate clade, we here characterize crossover and noncrossover landscapes in aye-ayes utilizing whole-genome sequencing data from six three-generation pedigrees and three two-generation multi-sibling families, and in so doing provide novel insights into this important evolutionary process shaping genomic diversity in one of the world's most critically endangered primate species. 
    more » « less
  2. Gaining a better understanding of rates and patterns of meiotic recombination is crucial for improving evolutionary genomic modelling, with applications ranging from demographic to selective inference. Although previous research has provided important insights into the landscape of crossovers in humans and other haplorrhines, our understanding of both the considerably more common outcome of recombination (i.e., non-crossovers) as well as the landscapes in more distantly-related primates (i.e., strepsirrhines) remains limited owing to difficulties associated with both the identification of non-crossover tracts as well as species sampling. Thus, in order to elucidate recombination patterns in this under-studied branch of the primate clade, we here characterize crossover and non-crossover landscapes in aye-ayes utilizing whole-genome sequencing data from six three-generation pedigrees as well as three two-generation multi-sibling families, and in so doing provide novel insights into this important evolutionary process shaping genomic diversity in one of the world’s most critically endangered primate species. 
    more » « less
  3. null (Ed.)
    Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species. Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date. To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-Seq data from four brain regions in an unprecedented eighteen species. Here we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our sample that represents an unprecedented 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size and found several with signals of positive selection in their regulatory regions. Our study extensively broadens the context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for study of genetic regulation of brain development and evolution. 
    more » « less
  4. ABSTRACT Gene family expansion underlies a host of biological innovations across the tree of life. Understanding why specific gene families expand or contract requires comparative genomic investigations clarifying further how species adapt in the wild. This study investigates the gene family change dynamics within several species ofDaphnia, a group of freshwater microcrustaceans that are insightful model systems for evolutionary genetics' research. We employ comparative genomics approaches to understand the forces driving gene evolution and draw upon candidate gene families that change gene numbers acrossDaphnia. Our results suggest that genes related to stress responses and glycoproteins generally expand across taxa, and we investigate evolutionary hypotheses of adaptation that may underpin expansions. Through these analyses, we shed light on the interplay between gene expansions and selection within other ecologically relevant stress response gene families. While we show generalities in gene family turnover in genes related to stress response (i.e., DNA repair mechanisms), most gene family evolution is driven in a species‐specific manner. Additionally, while we show general trends toward positive selection within some expanding gene families, many genes are not under selection, highlighting the complexity of diversification and evolution withinDaphnia. Our research enhances the understanding of individual gene family evolution withinDaphniaand provides a case study of ecologically relevant genes prone to change. 
    more » « less
  5. Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution. 
    more » « less