skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SIMPLE STRUCTURES AND COMPLEX STORIES: POTENTIAL MICROBIALLY INDUCED SEDIMENTARY STRUCTURES IN THE EDIACARAN SERRA DE SANTA HELENA FORMATION, BAMBUÍ GROUP, EASTERN BRAZIL
ABSTRACT Microbially induced sedimentary structures (MISS) are abundant in Ediacaran and lower Cambrian successions. However, the relationship between MISS distribution and facies has not been thoroughly explored in Ediacaran–Cambrian successions in South America. This study documents the occurrence of MISS and other potential biogenic structures from the late Ediacaran Serra de Santa Helena Formation in the Bambuí Group of eastern Brazil. This unit overlies the Cloudina-bearing Sete Lagoas Formation and is a mixed carbonate-siliciclastic succession devoid of macroscopic body fossils. Potential microbial structures include wrinkled structures such as “elephant-skin” and Kinneyia-like textures, as well as pustular structures and abundant positive epirelief discoidal structures. Another putative biogenic structure is a mm-wide meandering groove resembling a simple locomotion trail of a small vagile benthic metazoan. Microbial surface textures (i.e., “elephant skin” and Kinneyia-type wrinkles) were mainly observed in heterolithic deposits, usually at the interface between sandstone and siltstone/shale. On the other hand, discs show a facies-independent distribution, observed in heterolithic as well as carbonate and marl deposits. Petrographic analyses of these discs suggest that they have complex origins and some of them may be diagenetic structures. Thus, while facies may have strongly controlled the preservation of MISS-related structures and textures in the Serra de Santa Helena Formation, their abundance and diversity in tidal flat deposits indicate the wide distribution of matgrounds in these shallow marine paleoenvironments. Also, we demonstrate how detailed description and classification of simple features, such as discoidal structures, is an important task for paleoenvironmental reconstruction of marine ecosystems at the Ediacaran–Cambrian transition when the microbially bounded substrates played important roles in the dynamics of coastal environments.  more » « less
Award ID(s):
2021207
PAR ID:
10432242
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Palaios
Volume:
38
Issue:
4
ISSN:
0883-1351
Page Range / eLocation ID:
188 to 209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Ediacaran-Cambrian transition interval is described for the west part of the Gondwana Supercontinent. This key interval in Earth’s history is recorded in the upper and lower part of the Tagatiya Guazú and Cerro Curuzu formations, Itapucumi Group, Paraguay, encompassing a sedimentary succession deposited in a tidally influenced mixed carbonate-siliciclastic ramp. The remarkable presence of cosmopolitan Ediacaran shelly fossils and treptichnids, which are recorded in carbonate and siliciclastic deposits, respectively, suggests their differential preservation according to lithology. Their distribution is conditioned by substrate changes that are related to cyclic sedimentation. The associated positive steady trend of the δ13C values in the carbonate facies indicates that the Tagatiya Guazú succession is correlated to the late Ediacaran positive carbon isotope plateau. Sensitive high-resolution ion microprobe U-Pb ages of volcanic zircons from an ash bed ∼30 m above the fossil-bearing interval in the Cerro Curuzu Formation indicate an Early Cambrian (Fortunian) depositional age of 535.7 ± 5.2 Ma. As in other coeval sedimentary successions worldwide, the co-occurrence of typical Ediacaran skeletal taxa and relatively complex trace fossils in the studied strata highlights the global nature of key evolutionary innovations. 
    more » « less
  2. Abstract Neoproterozoic–Cambrian rocks of the Windermere Supergroup and overlying units record the breakup of Rodinia and formation of the northwestern Laurentian ancestral continental margin. Understanding the nature and timing of this transition has been hampered by difficulty correlating poorly dated sedimentary successions from contrasting depositional settings across Mesozoic structures. Here we present new litho- and chemo-stratigraphic data from a Cryogenian–lower Cambrian succession in east-central Yukon (Canada), establish correlations between proximal and distal parts of the upper Windermere Supergroup and related strata in the northern Canadian Cordillera, and consider implications for the formation of the northwestern Laurentian margin. The newly defined Nadaleen Formation hosts the first appearance of Ediacaran macrofossils, while the overlying Gametrail Formation features a large negative carbon isotope anomaly with δ13Ccarb values as low as –13‰ that correlates with the globally developed Shuram-Wonoka anomaly. We also define the Rackla Group, which includes the youngest (Ediacaran) portions of the Windermere Supergroup in the northern Cordillera. The top of the Windermere Supergroup is marked by an unconformity above the Risky Formation that passes into a correlative conformity in the Nadaleen River area. This surface has been interpreted to mark the top of the rift-related succession, but we draw attention to evidence for tectonic instability through the early-middle Cambrian and argue that the transition from rifting to post-rift thermal subsidence is marked by a widespread unconformity that underlies upper Cambrian carbonate rocks. This is younger than the interpreted age of the rift to post-rift transition elsewhere along the ancestral western Laurentian continental margin. 
    more » « less
  3. Abstract Ediacara‐type macrofossils appear as early as ~575 Ma in deep‐water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep‐water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf‐to‐slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf‐to‐slope depositional system to understand the spatiotemporal and environmental context of Ediacara‐type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerousAspidellahold‐fast discs, indicative of frondose Ediacara organisms, from deep‐water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow‐water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre‐Shuram CIE Ediacara‐type fossils occurring only in deep‐water facies within a basin that has equivalent well‐preserved shallow‐water facies provides the first stratigraphic paleobiological support for a deep‐water origination of the Ediacara biota. In contrast, new occurrences of Ediacara‐type fossils (including juvenile fronds,Beltanelliformis,Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep‐ and shallow‐water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota. 
    more » « less
  4. Abstract Subaqueous mass‐transport processes are one of the mechanisms for transport of sediment into the deep sea. Internal structures and depositional processes of carbonate mass‐transport deposits are relatively poorly understood relative to siliciclastic facies due to their comparative paucity in the rock record. A variety of carbonate mass‐transport deposits, including slumps, debrites and deep‐channel‐confined density flow deposits, occur in Middle–Upper Ordovician slope deposits in western Inner Mongolia (Wuhai), China. These provide a rare opportunity to illustrate the emplacement history of carbonate mass‐transport deposits at the outcrop scale. The slumps and debrites host remarkable folds, chaotic beds and imbricated beds that reflect differences in both rheology and position on the slope. Individual slump sheets show gradations between undulating laminae, inclined and recumbent folds, highly deformed folds, and chaotic textures upslope from the toe region. Debrites are commonly interbedded with slump deposits, whereas imbricated beds are present in the middle and lower parts of the toes of slump sheets near the terminal wall. In the study area, thin‐bedded limestone with slump deposits of the Kelimoli Formation are overlain by fine‐grained, siliciclastic‐dominated, slope deposits of the Wulalike Formation. A thick breccia of the Wulalike Formation was deposited in a main feeder channel in south‐east Wuhai, but to the west‐north‐west the breccia was deposited in distributary channels possibly represented as a unique lower‐slope pattern of gullies. At the latter locality, the breccia was deposited solely within the channels on a steep west‐north‐west dipping slope under density‐driven flows. The mass‐transport deposits documented herein records passive to foreland basin tectonic transitions, and associated platform foundering and steepening of the slope. A slope facies model was constructed to demonstrate the spatial and temporal variations of mass‐transport deposits during basin evolution, and as such it provides a template for the interpretation of the deposits of ancient slopes that underwent passive to active tectonic transitions. 
    more » « less
  5. While it remains uncertain whether excursions in the stable carbon isotopic composition of Ediacaran marine carbonate (δ13Ccarb) represent globally synchronous events (or a direct measure of ocean carbon cycling), the absence of widely distributed and readily preservable fauna, and the presence of several iconic carbon isotope excursions (CIEs), has sustained δ13Ccarb correlation as the primary means to establish relative time relationships for Ediacaran successions. Here we present an Ediacaran global δ13Ccarb composite built with a dynamic time warping (DTW) time-normalization algorithm that generates libraries of least-squares alignments between chemostratigraphic records of unequal length and distinct sediment accumulation rates. When developing a δ13Ccarb composite for each of 16 globally distributed Ediacaran paleo-depositional regions, we selected high Pearson r alignments that conformed with published geological guidance about the correlation of constituent sections. When applying DTW to align these regional algorithmic composites into one global δ13Ccarb stack, we selected alignments that allied the excursions that field workers have established (or speculated) are the Marinoan cap carbonate excursion, the Shuram excursion, and/or the basal Cambrian excursion. There are strengths and weaknesses to making explicit the temporal relationships (point-to-point correspondences) often left implicit in visual correlation. One strength is to extrapolate depositional ages by means of isotopic correlation, and here we explored this with a Bayesian Markov chain Monte Carlo age model that predicts a median age, and uncertainty, for every carbonate stratum in the global Ediacaran δ13Ccarb composite. Yet, one must caution against a false accuracy that can arise from selecting one alignment among many possibilities––the likelihood that time-uncertain time series can be stretched and squeezed into one unequivocal alignment is low. Thus, while these alignments are grounded in the expert assessment of the field worker, this global Ediacaran δ13Ccarb–Bayesian age model should be viewed as a working hypothesis to enrich, but not arbitrate, discussions of the correlation, synchrony, and completeness of Ediacaran successions. 
    more » « less