skip to main content

Title: Unsupervised Extractive Summarization of Emotion Triggers
Understanding what leads to emotions during large-scale crises is important as it can provide groundings for expressed emotions and subsequently improve the understanding of ongoing disasters. Recent approaches trained supervised models to both detect emotions and explain emotion triggers (events and appraisals) via abstractive summarization. However, obtaining timely and qualitative abstractive summaries is expensive and extremely time-consuming, requiring highly-trained expert annotators. In time-sensitive, high-stake contexts, this can block necessary responses. We instead pursue unsupervised systems that extract triggers from text. First, we introduce CovidET-EXT, augmenting (Zhan et al., 2022)’s abstractive dataset (in the context of the COVID-19 crisis) with extractive triggers. Second, we develop new unsupervised learning models that can jointly detect emotions and summarize their triggers. Our best approach, entitled Emotion-Aware Pagerank, incorporates emotion information from external sources combined with a language understanding module, and outperforms strong baselines. We release our data and code at  more » « less
Award ID(s):
2145479 2107524
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Crises such as the COVID-19 pandemic continuously threaten our world and emotionally affect billions of people worldwide in distinct ways. Understanding the triggers leading to people’s emotions is of crucial importance. Social media posts can be a good source of such analysis, yet these texts tend to be charged with multiple emotions, with triggers scattering across multiple sentences. This paper takes a novel angle, namely, emotion detection and trigger summarization, aiming to both detect perceived emotions in text, and summarize events and their appraisals that trigger each emotion. To support this goal, we introduce CovidET (Emotions and their Triggers during Covid-19), a dataset of ~1,900 English Reddit posts related to COVID-19, which contains manual annotations of perceived emotions and abstractive summaries of their triggers described in the post. We develop strong baselines to jointly detect emotions and summarize emotion triggers. Our analyses show that CovidET presents new challenges in emotion-specific summarization, as well as multi-emotion detection in long social media posts. 
    more » « less
  2. null (Ed.)
    Expressive behaviors conveyed during daily interactions are difficult to determine, because they often consist of a blend of different emotions. The complexity in expressive human communication is an important challenge to build and evaluate automatic systems that can reliably predict emotions. Emotion recognition systems are often trained with limited databases, where the emotions are either elicited or recorded by actors. These approaches do not necessarily reflect real emotions, creating a mismatch when the same emotion recognition systems are applied to practical applications. Developing rich emotional databases that reflect the complexity in the externalization of emotion is an important step to build better models to recognize emotions. This study presents the MSP-Face database, a natural audiovisual database obtained from video-sharing websites, where multiple individuals discuss various topics expressing their opinions and experiences. The natural recordings convey a broad range of emotions that are difficult to obtain with other alternative data collection protocols. A feature of the corpus is the addition of two sets. The first set includes videos that have been annotated with emotional labels using a crowd-sourcing protocol (9,370 recordings – 24 hrs, 41 m). The second set includes similar videos without emotional labels (17,955 recordings – 45 hrs, 57 m), offering the perfect infrastructure to explore semi-supervised and unsupervised machine-learning algorithms on natural emotional videos. This study describes the process of collecting and annotating the corpus. It also provides baselines over this new database using unimodal (audio, video) and multimodal emotional recognition systems. 
    more » « less
  3. Understanding emotions that people express during large-scale crises helps inform policy makers and first responders about the emotional states of the population as well as provide emotional support to those who need such support. We present CovidEmo, a dataset of ~3,000 English tweets labeled with emotions and temporally distributed across 18 months. Our analyses reveal the emotional toll caused by COVID-19, and changes of the social narrative and associated emotions over time. Motivated by the time-sensitive nature of crises and the cost of large-scale annotation efforts, we examine how well large pre-trained language models generalize across domains and timeline in the task of perceived emotion prediction in the context of COVID-19. Our analyses suggest that cross-domain information transfers occur, yet there are still significant gaps. We propose semi-supervised learning as a way to bridge this gap, obtaining significantly better performance using unlabeled data from the target domain. 
    more » « less
  4. null (Ed.)
    As inborn characteristics, humans possess the ability to judge visual aesthetics, feel the emotions from the environment, and comprehend others’ emotional expressions. Many exciting applications become possible if robots or computers can be empowered with similar capabilities. Modeling aesthetics, evoked emotions, and emotional expressions automatically in unconstrained situations, however, is daunting due to the lack of a full understanding of the relationship between low-level visual content and high-level aesthetics or emotional expressions. With the growing availability of data, it is possible to tackle these problems using machine learning and statistical modeling approaches. In the talk, I provide an overview of our research in the last two decades on data-driven analyses of visual artworks and digital visual content for modeling aesthetics and emotions. First, I discuss our analyses of styles in visual artworks. Art historians have long observed the highly characteristic brushstroke styles of Vincent van Gogh and have relied on discerning these styles for authenticating and dating his works. In our work, we compared van Gogh with his contemporaries by statistically analyzing a massive set of automatically extracted brushstrokes. A novel extraction method is developed by exploiting an integration of edge detection and clustering-based segmentation. Evidence substantiates that van Gogh’s brushstrokes are strongly rhythmic. Next, I describe an effort to model the aesthetic and emotional characteristics in visual contents such as photographs. By taking a data-driven approach, using the Internet as the data source, we show that computers can be trained to recognize various characteristics that are highly relevant to aesthetics and emotions. Future computer systems equipped with such capabilities are expected to help millions of users in unimagined ways. Finally, I highlight our research on automated recognition of bodily expression of emotion. We propose a scalable and reliable crowdsourcing approach for collecting in-the-wild perceived emotion data for computers to learn to recognize the body language of humans. Comprehensive statistical analysis revealed many interesting insights from the dataset. A system to model the emotional expressions based on bodily movements, named ARBEE (Automated Recognition of Bodily Expression of Emotion), has also been developed and evaluated. 
    more » « less
  5. In recent years, extensive research has emerged in affective computing on topics like automatic emotion recognition and determining the signals that characterize individual emotions. Much less studied, however, is expressiveness—the extent to which someone shows any feeling or emotion. Expressiveness is related to personality and mental health and plays a crucial role in social interaction. As such, the ability to automatically detect or predict expressiveness can facilitate significant advancements in areas ranging from psychiatric care to artificial social intelligence. Motivated by these potential applications, we present an extension of the BP4D+ data set [27] with human ratings of expressiveness and develop methods for (1) automatically predicting expressiveness from visual data and (2) defining relationships between interpretable visual signals and expressiveness. In addition, we study the emotional context in which expressiveness occurs and hypothesize that different sets of signals are indicative of expressiveness in different con-texts (e.g., in response to surprise or in response to pain). Analysis of our statistical models confirms our hypothesis. Consequently, by looking at expressiveness separately in distinct emotional contexts, our predictive models show significant improvements over baselines and achieve com-parable results to human performance in terms of correlation with the ground truth. 
    more » « less