skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Robust Recurrent Classifier Chains for Multi-Label Learning with Missing Labels
Recurrent Classifier Chains (RCCs) are a leading approach for multi-label classification as they directly model the interdependencies between classes. Unfortunately, existing RCCs assume that every training instance is completely labeled with all its ground truth classes. In practice often only a subset of an instance's labels are annotated, while the annotations for other classes are missing. RCCs fail in this missing label scenario, predicting many false negatives and potentially missing important classes. In this work, we propose Robust-RCC, the first strategy for tackling this open problem of RCCs failing for multi-label missing-label data. Robust-RCC is a new type of deep recurrent classifier chain empowered to model inter-class relationships essential for predicting the complete label set most likely to match the ground truth. The key to Robust-RCC is the design of the Multi Incomplete Label Risk (MILR) function, which we prove to be equal in expectation to the true risk of the ground truth full label set despite being computed from incompletely labeled data. Our experimental study demonstrates that Robust-RCC consistently beats six state-of-of-the-art methods by as much as 30% in predicting the true labels.  more » « less
Award ID(s):
2021871
NSF-PAR ID:
10432303
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
31st ACM International Conference on Information & Knowledge Management
Page Range / eLocation ID:
582 to 591
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Multi-label classification (MLC), which assigns multiple labels to each instance, is crucial to domains from computer vision to text mining. Conventional methods for MLC require huge amounts of labeled data to capture complex dependencies between labels. However, such labeled datasets are expensive, or even impossible, to acquire. Worse yet, these pre-trained MLC models can only be used for the particular label set covered in the training data. Despite this severe limitation, few methods exist for expanding the set of labels predicted by pre-trained models. Instead, we acquire vast amounts of new labeled data and retrain a new model from scratch. Here, we propose combining the knowledge from multiple pre-trained models (teachers) to train a new student model that covers the union of the labels predicted by this set of teachers. This student supports a broader label set than any one of its teachers without using labeled data. We call this new problem knowledge amalgamation for multi-label classification. Our new method, Adaptive KNowledge Transfer (ANT), trains a student by learning from each teacher’s partial knowledge of label dependencies to infer the global dependencies between all labels across the teachers. We show that ANT succeeds in unifying label dependencies among teachers, outperforming five state-of-the-art methods on eight real-world datasets. 
    more » « less
  2. Machine learning models are bounded by the credibility of ground truth data used for both training and testing. Regardless of the problem domain, this ground truth annotation is objectively manual and tedious as it needs considerable amount of human intervention. With the advent of Active Learning with multiple annotators, the burden can be somewhat mitigated by actively acquiring labels of most informative data instances. However, multiple annotators with varying degrees of expertise poses new set of challenges in terms of quality of the label received and availability of the annotator. Due to limited amount of ground truth information addressing the variabilities of Activity of Daily Living (ADLs), activity recognition models using wearable and mobile devices are still not robust enough for real-world deployment. In this paper, we propose an active learning combined deep model which updates its network parameters based on the optimization of a joint loss function. We then propose a novel annotator selection model by exploiting the relationships among the users while considering their heterogeneity with respect to their expertise, physical and spatial context. Our proposed model leverages model-free deep reinforcement learning in a partially observable environment setting to capture the actionreward interaction among multiple annotators. Our experiments in real-world settings exhibit that our active deep model converges to optimal accuracy with fewer labeled instances and achieves 8% improvement in accuracy in fewer iterations. 
    more » « less
  3. Ranzato, M. ; Beygelzimer, A. ; Dauphin, Y. ; Liang, P.S. ; Vaughan, J. W. (Ed.)
    We provide theoretical guarantees for label consistency in generalized k-means problems, with an emphasis on the overfitted case where the number of clusters used by the algorithm is more than the ground truth. We provide conditions under which the estimated labels are close to a refinement of the true cluster labels. We consider both exact and approximate recovery of the labels. Our results hold for any constant-factor approximation to the k-means problem. The results are also model-free and only based on bounds on the maximum or average distance of the data points to the true cluster centers. These centers themselves are loosely defined and can be taken to be any set of points for which the aforementioned distances can be controlled. We show the usefulness of the results with applications to some manifold clustering problems. 
    more » « less
  4. null (Ed.)
    Hierarchical multi-label text classification (HMTC) aims to tag each document with a set of classes from a class hierarchy. Most existing HMTC methods train classifiers using massive human-labeled documents, which are often too costly to obtain in real-world applications. In this paper, we explore to conduct HMTC based on only class surface names as supervision signals. We observe that to perform HMTC, human experts typically first pinpoint a few most essential classes for the document as its “core classes”, and then check core classes’ ancestor classes to ensure the coverage. To mimic human experts, we propose a novel HMTC framework, named TaxoClass. Specifically, TaxoClass (1) calculates document-class similarities using a textual entailment model, (2) identifies a document’s core classes and utilizes confident core classes to train a taxonomyenhanced classifier, and (3) generalizes the classifier via multi-label self-training. Our experiments on two challenging datasets show TaxoClass can achieve around 0.71 Example- F1 using only class names, outperforming the best previous method by 25%. 
    more » « less
  5. Existing approaches for multi-label classification are trained offline, missing the opportunity to adapt to new data instances as they become available. To address this gap, an online multi-label classification method was proposed recently, to learn from data instances sequentially. In this work, we focus on multi-label classification tasks, in which the labels are organized in a hierarchy. We formulate online hierarchical multi-labeled classification as an online optimization task that jointly learns individual label predictors and a label threshold, and propose a novel hierarchy constraint to penalize predictions that are inconsistent with the label hierarchy structure. Experimental results on three benchmark datasets show that the proposed approach outperforms online multi-label classification methods, and achieves comparable to, or even better performance than offline hierarchical classification frameworks with respect to hierarchical evaluation metrics. 
    more » « less