skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Building a Well-Equipped Skilled Technical Workforce by Adopting the Framework for a Cross-Disciplinary STEM Core
STEM technician education programs face a world in which cutting-edge technologies are transforming existing industries and creating new ones at an unprecedented pace. In light of this, the NSF ATE project Preparing Technicians for the Future of Work conducted industry site interviews and regional convenings of academic partners and industry leaders representing a wide range of technical fields to learn how technology impacts technician job tasks and roles. Through these activities, the project identified three skill areas common across multiple technologies and deemed essential for future STEM technicians: data knowledge/analysis, advanced digital literacy, and business knowledge/processes. These “cross-disciplinary STEM core” skill sets and recommendations for integrating them into technical programs are described in A Framework for a Cross-Disciplinary STEM Core. To facilitate adoption of the Framework at a systemic level, the project is sharing an adoption toolkit with concrete steps a college can take, tools it can use with employers to prioritize STEM Core skill sets and faculty activities for identifying where prioritized skills are taught within existing program curriculum and instructional gaps where new cross-disciplinary skill sets could be easily integrated.  more » « less
Award ID(s):
1839567
PAR ID:
10432690
Author(s) / Creator(s):
; ;
Editor(s):
Kazarinoff, P.
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
2
Issue:
1
ISSN:
2832-9627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kazarinoff, P. (Ed.)
    Different perspectives on the “Future of Work” can cause disconnections between the technician skills needed by industry and those taught by the educational programs preparing technicians to participate in Industry 4.0 (I4.0) manufacturing environments. Variations in the methodology of identifying, grouping, and describing technical skills and skill areas are driven by variations in sources of information and the industries and locales they represent. This paper summarizes for the ATE audience a FLATE (Florida Advanced Technological Education Center of Excellence) project [1]—Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers (DUE 1939173)—that compared the skills needed by Florida manufacturers to the skills taught at two-year Florida colleges, and then mapped those skills to the I4.0 skills identified by a national sampling of technology-focused industries carried out by the CORD project Preparing Technicians for the Future of Work (DUE 1839567) [2]. Specifically, the paper (i) reviews the I4.0 technology skills identified by the Boston Consulting Group; (ii) presents I4.0 skill interactions with the results from the CORD and FLATE projects; and (iii) maps Florida-identified technician skill needs to the Cross-Disciplinary STEM Core skills identified at the national level by the CORD project. The paper also summarizes the process for integration of the I4.0 technology-related skills into the AS engineering technology program offered by twenty-two colleges in the Florida State College System [3,4,5]. 
    more » « less
  2. Engineering Technology Skill Sets span many applications within 21st-century manufacturing situations. These traditional technologies are now being modified and enhanced with Industry 4.0 (I4.0) technologies, with the expectation that many Engineering Technology (ET) technicians will address these I4.0-driven industry situations. To ensure that tomorrow's technician will service this expectation, today's ET preparation faculty must know how ET Skill Set skills are applied and adapted to prepare the rising technicians. Effective hands-on Professional Development (PD) for ET Technology faculty responsible for technician Skill Set education is a proactive 1st step. This PD must include the related hands-on experiences for students and facilitate faculty's subsequent transfer of skill learning at appropriate intensities to targeted student cohorts. 
    more » « less
  3. To build the nation's skilled technical workforce, the demand for entry and middle-skill professionals in technical fields in Science, Technology, Engineering, and Mathematics (STEM) is increasing. The alignment between educational programming and job requirements for STEM-oriented technicians is essential for establishing career pathways that produce high-quality middle skills professionals for technology-rich fields. Building on prior research on rural Florida’s information technologies career pathways, in this National Science Foundation (NSF) Advanced Technician Education (ATE) targeted research project, FSU researchers are investigating alignment among educational opportunities, employer needs, student readiness and new employee experiences in Advanced Manufacturing (AM) and test the usefulness of tools and processes developed to assess such alignment, focusing on the opportunities and challenges in Florida’s rural areas. Researchers constructed and are iteratively refining an AM Body of Knowledge (BOK) for analysis and community engagement. The quantitative and qualitative mixed methods research design combines content analysis and text mining using the BOK with surveys, and interviews/focus groups. The research team is applying text mining approaches to identify the match between syllabi learning outcomes, industry certification requirements, state curriculum frameworks, and job postings. In interviews and focus groups, researchers are qualitatively assessing the employers’ competency expectations and new professionals’ job experiences. These analyses will build capacity among rural stakeholders to strengthen and expand their technical workforce. 
    more » « less
  4. "Industry 4.0-based systems and subsystems are replacing current process and process control equipment in Florida’s manufacturing environment. The Florida State College System Engineering Technology (ET) degree pathway for developing engineering technology professionals is responding to this reality at the ET two-year associate degree, the 4-year ET B.S. degree, and post-graduate degrees as well as a statewide recognized path to the Professional Engineers license in Engineering Technology. The National Science Foundation Advanced Technological Education program (NSF-ATE) supports this effort. NSF-ATE assets provided to FLATE and five partner colleges are directed to the formation of a statewide advisory board for the 20 colleges that offer ET degrees as well as supporting six overarching Florida ET education system target goals: (1) Adjust Florida Department of Education Standards and Benchmarks to include criteria that address Florida manufacturer-identified Industry 4.0 skills gap in its technical workforce. (2) Create a statewide streamlined seamless articulation environment from the Engineering Technology A.S. to B.S. degree programs. (3) Provide Professional Development that up-skills Engineering Technology Degree faculty as related to identified Industry 4.0 technician skill needs. (4) Create a short-term ET College Credit Certificate to prepare current and future technicians to apply these new skills in the manufacturing workspace. (5) Amplify the manufacturer's involvement with college engineering technology certificates and A.S.ET degree programs. (6) Create Post-A.S. Curriculum Advanced Technology Certificate (ATC) to facilitate skilled technician professional advancement. Statewide implementation of the curriculum changes is key to more robust programs and more work-ready technician graduates. This paper and presentation poster will share the strategies the project team is using to achieve its goals and objectives. It will also share the feedback received from the industry relative to industry 4.0 skills needed in their facilities." 
    more » « less
  5. Intelligent Autonomous Systems, including Intelligent Manufacturing & Automation and Industry 4.0, have immense potential to improve human health, safety, and welfare. Engineering these systems requires an interdisciplinary knowledge of mechanical, electrical, computer, software, and systems engineering throughout the design and development process. Mechatronics and Robotics Engineering (MRE) is emerging as a discipline that can provide the broad inter-disciplinary technical and professional skill sets that are critical to fulfill the research and development needs for these advanced systems. Despite experiencing tremendous, dynamic growth, MRE lacks a settled-on and agreed-upon body-of-knowledge, leading to unmet needs for standardized curricula, courses, laboratory platforms, and accreditation criteria, resulting in missed career opportunities for individuals and missed economic opportunities for industry. There have been many educational efforts around MRE, including courses, minors, and degree programs, but they have not been well integrated or widely adopted, especially in USA. To enable MRE to coalesce as a distinct and identifiable engineering field, the authors conducted four workshops on the Future of Mechatronics and Robotics Engineering (FoMRE) education at the bachelor’s degree level. The overall goal of the workshops was to improve the quality of undergraduate MRE education and to ease the adoption of teaching materials to prepare graduates with a blend of theoretical knowledge and practical hands-on skills. To realize this goal, the specific objectives were to generate enthusiasm and a sense of community among current and future MRE educators, promote diversity and inclusivity within the MRE community, identify thought leaders, and seek feedback from the community to serve as a foundation for future activities. The workshops were intended to benefit a wide range of participants including educators currently teaching or developing programs in MRE, PhD students seeking academic careers in MRE, and industry professionals desiring to shape the future workforce. Workshop activities included short presentations on sample MRE programs, breakout sessions on specific topics, and open discussion sessions. As a result of these workshops, the MRE educational community has been enlarged and engaged, with members actively contributing to the scholarship of teaching and learning. This paper presents the workshops’ formats, outcomes, results of participant surveys, and their analyses. A major outcome was identifying concept, skill, and experience inventories organized around the dimensions of foundational/practical/applications and student preparation/MRE knowledgebase. Particular attention is given to the extent to which the workshops realized the project goals, including attendee demographics, changes in participant attitudes, and development of the MRE community. The paper concludes with a summary of lessons learned and a call for future activities to shape the field. 
    more » « less