skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Building a Well-Equipped Skilled Technical Workforce by Adopting the Framework for a Cross-Disciplinary STEM Core
STEM technician education programs face a world in which cutting-edge technologies are transforming existing industries and creating new ones at an unprecedented pace. In light of this, the NSF ATE project Preparing Technicians for the Future of Work conducted industry site interviews and regional convenings of academic partners and industry leaders representing a wide range of technical fields to learn how technology impacts technician job tasks and roles. Through these activities, the project identified three skill areas common across multiple technologies and deemed essential for future STEM technicians: data knowledge/analysis, advanced digital literacy, and business knowledge/processes. These “cross-disciplinary STEM core” skill sets and recommendations for integrating them into technical programs are described in A Framework for a Cross-Disciplinary STEM Core. To facilitate adoption of the Framework at a systemic level, the project is sharing an adoption toolkit with concrete steps a college can take, tools it can use with employers to prioritize STEM Core skill sets and faculty activities for identifying where prioritized skills are taught within existing program curriculum and instructional gaps where new cross-disciplinary skill sets could be easily integrated.  more » « less
Award ID(s):
1839567
PAR ID:
10432690
Author(s) / Creator(s):
; ;
Editor(s):
Kazarinoff, P.
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
2
Issue:
1
ISSN:
2832-9627
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kazarinoff, P. (Ed.)
    Different perspectives on the “Future of Work” can cause disconnections between the technician skills needed by industry and those taught by the educational programs preparing technicians to participate in Industry 4.0 (I4.0) manufacturing environments. Variations in the methodology of identifying, grouping, and describing technical skills and skill areas are driven by variations in sources of information and the industries and locales they represent. This paper summarizes for the ATE audience a FLATE (Florida Advanced Technological Education Center of Excellence) project [1]—Technician Future of Work Issues Caucus for Florida Community Colleges and Manufacturers (DUE 1939173)—that compared the skills needed by Florida manufacturers to the skills taught at two-year Florida colleges, and then mapped those skills to the I4.0 skills identified by a national sampling of technology-focused industries carried out by the CORD project Preparing Technicians for the Future of Work (DUE 1839567) [2]. Specifically, the paper (i) reviews the I4.0 technology skills identified by the Boston Consulting Group; (ii) presents I4.0 skill interactions with the results from the CORD and FLATE projects; and (iii) maps Florida-identified technician skill needs to the Cross-Disciplinary STEM Core skills identified at the national level by the CORD project. The paper also summarizes the process for integration of the I4.0 technology-related skills into the AS engineering technology program offered by twenty-two colleges in the Florida State College System [3,4,5]. 
    more » « less
  2. To build the nation's skilled technical workforce, the demand for entry and middle-skill professionals in technical fields in Science, Technology, Engineering, and Mathematics (STEM) is increasing. The alignment between educational programming and job requirements for STEM-oriented technicians is essential for establishing career pathways that produce high-quality middle skills professionals for technology-rich fields. Building on prior research on rural Florida’s information technologies career pathways, in this National Science Foundation (NSF) Advanced Technician Education (ATE) targeted research project, FSU researchers are investigating alignment among educational opportunities, employer needs, student readiness and new employee experiences in Advanced Manufacturing (AM) and test the usefulness of tools and processes developed to assess such alignment, focusing on the opportunities and challenges in Florida’s rural areas. Researchers constructed and are iteratively refining an AM Body of Knowledge (BOK) for analysis and community engagement. The quantitative and qualitative mixed methods research design combines content analysis and text mining using the BOK with surveys, and interviews/focus groups. The research team is applying text mining approaches to identify the match between syllabi learning outcomes, industry certification requirements, state curriculum frameworks, and job postings. In interviews and focus groups, researchers are qualitatively assessing the employers’ competency expectations and new professionals’ job experiences. These analyses will build capacity among rural stakeholders to strengthen and expand their technical workforce. 
    more » « less
  3. "Industry 4.0-based systems and subsystems are replacing current process and process control equipment in Florida’s manufacturing environment. The Florida State College System Engineering Technology (ET) degree pathway for developing engineering technology professionals is responding to this reality at the ET two-year associate degree, the 4-year ET B.S. degree, and post-graduate degrees as well as a statewide recognized path to the Professional Engineers license in Engineering Technology. The National Science Foundation Advanced Technological Education program (NSF-ATE) supports this effort. NSF-ATE assets provided to FLATE and five partner colleges are directed to the formation of a statewide advisory board for the 20 colleges that offer ET degrees as well as supporting six overarching Florida ET education system target goals: (1) Adjust Florida Department of Education Standards and Benchmarks to include criteria that address Florida manufacturer-identified Industry 4.0 skills gap in its technical workforce. (2) Create a statewide streamlined seamless articulation environment from the Engineering Technology A.S. to B.S. degree programs. (3) Provide Professional Development that up-skills Engineering Technology Degree faculty as related to identified Industry 4.0 technician skill needs. (4) Create a short-term ET College Credit Certificate to prepare current and future technicians to apply these new skills in the manufacturing workspace. (5) Amplify the manufacturer's involvement with college engineering technology certificates and A.S.ET degree programs. (6) Create Post-A.S. Curriculum Advanced Technology Certificate (ATC) to facilitate skilled technician professional advancement. Statewide implementation of the curriculum changes is key to more robust programs and more work-ready technician graduates. This paper and presentation poster will share the strategies the project team is using to achieve its goals and objectives. It will also share the feedback received from the industry relative to industry 4.0 skills needed in their facilities." 
    more » « less
  4. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1. 
    more » « less
  5. The HSI (Hispanic Serving Institution) ATE (Advanced Technological Education) Hub 2 is a three-year collaborative research project funded by the National Science Foundation (NSF) that continues the partnership between two successful programs and involves a third partner in piloting professional development that draws upon findings from the initial program. The goal of HSI ATE Hub 2 is to improve outcomes for Latinx students in technician education programs through design, development, pilot delivery, and dissemination of a 3-tier professional development (PD) model for culturally responsive technician education at 2-year Hispanic Serving Institutions (HSIs). The project seeks to do this by developing the awareness and ability of faculty to appreciate, engage, and affirm the unique cultural identities of the students in their classes and use this connection to deepen students’ belonging and emerging identities as STEM learners and future STEM technicians. This paper shares the research foundations shaping this approach and the methods by which faculty professional development is being provided to develop this important and sensitive instructional capability in participating faculty. The tiered PD model features a scaffolded series of reflective and activity-oriented modules to incrementally enrich the instructional practices and mindset of HSI STEM educators and strengthen their repertoire of strategies for engaging culturally diverse students. Scaffolding that translates culturally responsive theory to practice spans each of the four distinct topic modules in each tier. Each topic module in a tier then scaffolds to a more advanced topic module in the next tier. Tier 1, Bienvenidos, welcomes HSI STEM educators who recognize the need to better serve their Latinx students, and want guidance for small practical activities to try with their students. Tier 2, Transformation through Action, immerses HSI STEM educators in additional activities that bring culturally responsive practices into their technician training while building capacity to collect evidence about impacts and outcomes for students. Tier 3, Engaging Community, strengthens leadership as HSI STEM educators disseminate results from activities completed in Tiers 1 and 2 at conferences that attract technician educators. Sharing the evidence-based practices and their outcomes contributes to achieving broader impacts in the Advanced Technological Education or ATE Community of NSF grantees. Westchester Community College (WCC), the first 2-year HSI in the State University of New York (SUNY) 64 campus system, is piloting the 3-tier PD model using virtual learning methods mastered through previous NSF ATE work and the COVID-19 context. During the pilot, over 20 WCC technician educators in three cohorts will develop leadership skills and practice culturally responsive methods. The pilot will build capacity within WCC STEM technician programs to better support the diversity of students, industry demand for a diverse workforce, and WCC’s capacity for future development of technician education programs. This first paper in a three part series describes the program goals and objectives, the 3-Tier PD model, and reports initial results for Cohort A’s engagement in the first three modules of Tier 1. 
    more » « less